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Ethanol-induced oxidative stress: basic knowledge
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Abstract After a general introduction, the main pathways

of ethanol metabolism (alcohol dehydrogenase, catalase,

coupling of catalase with NADPH oxidase and microsomal

ethanol-oxidizing system) are shortly reviewed. The cyto-

chrome P450 isoform (CYP2E1) specifically involved in

ethanol oxidation is discussed. The acetaldehyde metabo-

lism and the shift of the NAD/NADH ratio in the cellular

environment (reductive stress) are stressed. The toxic

effects of acetaldehyde are mentioned. The ethanol-

induced oxidative stress: the increased MDA formation by

incubated liver preparations, the absorption of conjugated

dienes in mitochondrial and microsomal lipids and the

decrease in the most unsaturated fatty acids in liver cell

membranes are discussed. The formation of carbon-cen-

tered (1-hydroxyethyl) and oxygen-centered (hydroxyl)

radicals during the metabolism of ethanol is considered: the

generation of hydroxyethyl radicals, which occurs likely

during the process of univalent reduction of dioxygen, is

highlighted and is carried out by ferric cytochrome P450

oxy-complex (P450–Fe3?O2
�-) formed during the reduction

of heme-oxygen. The ethanol-induced lipid peroxidation

has been evaluated, and it has been shown that plasma

F2-isoprostanes are increased in ethanol toxicity.
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Introduction

Ethanol unlike many other hepatotoxic chemicals is not a

foreign substance for living organisms; it occurs, in fact, in

small amounts in mammalian tissues [82] and is conceiv-

ably formed by the alcohol dehydrogenase-catalyzed

reduction of acetaldehyde derived from the decarboxyl-

ation of the intermediary metabolite pyruvate [83]. A sim-

ilar reaction also occurs in biological fermentation (such as

that yielding ethyl alcohol in wine and other alcoholic

beverages) in which glucose is fermented by yeast. More-

over, significant amounts of ethanol are normally formed in

the gastrointestinal tract, absorbed by the portal vein and

metabolized in the liver [64]; most alcohol is of microbial

origin, the other portion probably arising from the acetal-

dehyde formed by the normal pathways of degradation of

threonine, deoxyribose phosphate and b-alanine. Further-

more, ethanol is rapidly and most entirely converted to the

key intermediate, acetate, which can enter a wide-spread

variety of metabolic pathways. This ‘‘more physiological’’

aspect of ethanol when compared with other hepatotoxic

drugs complicates to a large extent the study of the

mechanisms involved in the pathogenetic effects of alco-

hol. The great interest on ethylism from both a clinical and

a sociological point of views resulted in an impressive

number of studies on the effects of ethyl alcohol. However,

the results have not been even univocal because the models

used (alcohol dosage, acute or chronic administration,

animals studied, different susceptibility to ethanol con-

sumption, sex, nutritional status, etc.) have been extremely

variable. Even the choice of the model itself for the study is

questionable: in fact, if the acute (single large dose of

alcohol) intoxication is a model more suitable for the study

of the direct effects of ethanol at the cellular, subcellular

and molecular level, it is obviously away from the
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conditions of the alcoholic; the chronic intoxication, on the

other hand, is more adherent to such conditions but is

subjected to a number of variables (of nutritional order in

particular) that can contribute to a great extent to the

development of the lesions, so that it is more difficult to

discern the net role played by alcohol. Since the aim of the

present review is to focus on the mechanisms of ethanol-

induced liver injury and on the role of oxidative stress,

particular attention will be paid to the results obtained with

acute ethanol intoxication.

Ethanol metabolism and consequent alterations

of the overall metabolism of the hepatic cell

The pathophysiological bases of the hepatic alterations

produced by ethanol start obviously from its metabolism.

Ethanol is quickly absorbed in the gastrointestinal tract and

is almost completely oxidized to carbon dioxide and water.

Minor amounts only are excreted, unmetabolized, in urine,

breath and sweat. The rate of alcohol metabolism varies

between 50 and 180 mg/h/kg body wt [118] in adult men,

while in rats and mice, notwithstanding the natural aversion

to alcohol, a two to threefold higher rate has been reported

[67].

Alcohol is mainly metabolized in the liver, and the

metabolic pathways are summarized in Fig. 1. The most

important pathway is represented by alcohol dehydroge-

nase, a zinc containing metalloenzyme [121] widely dis-

tributed in nature, localized in the soluble cytoplasm and

NAD?-dependent. It catalyzes the oxidation of ethanol to

acetaldehyde (Fig. 1A). It is generally accepted that etha-

nol is also metabolized by catalase, a heme-containing

enzyme widely distributed in nature and particularly

expressed in the peroxisomes. Catalase, which normally

catalyzes the decomposition of H2O2 to H2O and O2 (cat-

alatic reaction), can also catalyze the reduction of H2O2 to

H2O if electron donors are present (peroxidatic reaction);

generally such reaction is catalyzed by peroxidase, but

catalase can also catalyze peroxidative type reactions,

when hydrogen peroxide is produced and a source of

electron donors is available. Ethanol, which acts as an

electron donor, is so oxidized to acetaldehyde (Fig. 1B).

Hydrogen peroxide necessary for the reaction can be

produced by oxidases, some of which also occur in the

peroxisomes [14].

Ethanol oxidation can also result from the coupling of

the reactions catalyzed by NADPH oxidase (microsomal)

and xanthine oxidase with catalase (Fig. 1C, D, respec-

tively). Which is the real importance of catalase in ethanol

metabolism is not clear; it seems to be the most important

pathway for the metabolism of methanol [1], while it

would be of minor importance for the oxidation of ethanol,

at least under normal conditions.

Finally, Lieber and De Carli [69] and Lieber et al. [78]

have described a third metabolic pathway for ethanol oxi-

dation occurring in the endoplasmic reticulum of the

hepatocyte and named ‘‘microsomal ethanol-oxidizing

system’’ (MEOS) (Fig. 1E). It utilizes the terms of the

enzymatic system of ‘‘drug metabolism’’ (mixed function

oxidase system, driven by the microsomal electron trans-

port chain). MEOS with NADPH as a cofactor, oxidizes, it

too, ethanol to acetaldehyde (Fig. 1E). A long debate fol-

lowed the report of MEOS as a separate and individual

ethanol-oxidizing system: some authors [19, 115] claimed

that microsomal ethanol oxidation could result from the

coupling of the activities of NADPH oxidase, the real

microsomal enzyme, with catalase or with catalase and

alcohol dehydrogenase (present as contaminant in the

microsomal fraction) [57]. However, the group of Lieber

[117] and others [87] showed that (a) MEOS is active even

in acatalasemic animals; (b) a reconstituted system con-

sisting of the essential terms of drug metabolism, i.e.,

cytochrome P450, NADPH-cytochrome c reductase and

synthetic phospholipids, is able to oxidize, besides benz-

phetamine (characteristic substrate of drug metabolism),

ethanol and other alcohols too and that MEOS is adaptively

increased after chronic ethanol consumption, like other

drug metabolizing activities. The induction of drug

metabolizing enzymes due to alcohol [56, 73, 108, 109]

and the fact that ethanol in vitro inhibits in a competitive

way the same enzymes, could explain, at least in part, the

increased tolerance of alcoholics to sedatives when sober

and the enhanced sensitivity to sedatives when inebriated.

The quantitative contribution of microsomal ethanol oxi-

dation to the overall ethanol metabolism is another much
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Fig. 1 Metabolic pathways of ethanol
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debated question. According to some estimations [115] this

route does not play a significant role in the metabolism of

alcohol in vivo; however, according to the calculation of

[71] about � of the ethanol ingested could be metabolized

by MEOS in normal conditions, while, after prolonged

ethanol consumption, the role of MEOS could be consid-

erably greater. Today, it is well known that the isoform of

cytochrome P450 involved in ethanol oxidation, CYP2E1

(see in the following paragraphs), has a much higher Km for

ethanol (8–10 mmol/l) compared to that of alcohol dehy-

drogenase (0.2–2 mmol/l); however, chronic alcohol con-

sumption increases the activity of CYP2E1 by several

times [3].

Acetaldehyde metabolism

As reported in the previous paragraphs, all the ethanol-

metabolizing pathways lead to the formation of acetalde-

hyde. The latter can be oxidized to acetate mainly by

enzymes, aldehydes dehydrogenases, which are mito-

chondrial, NAD?-dependent enzymes. Thus, the two main

steps of ethanol metabolism, namely, the NAD?-linked

oxidation of ethanol to acetaldehyde and the NAD?-linked

oxidation of acetaldehyde to acetate, cause an increased

concentration of the reduced pyridine coenzyme, NADH.

Therefore, a decrease in the NAD?/NADH ratio occurs in

the liver cell and such an imbalance would represent,

according to a classic view of the problem [68, 74, 75], the

central event in the explanation of the various metabolic

alterations produced directly in the hepatic cell by ethanol

oxidation, including triglyceride accumulation (the impor-

tance of the reductive stress environment created by etha-

nol oxidation will be outlined in the following paragraphs).

As is known, the reoxidation of NADH formed in the

soluble cytoplasm occurs through shuttle mechanisms that

transfer reducing equivalents from cytoplasmic NADH to

mitochondrial electron transport chain. The latter becomes

quickly saturated by reducing equivalents originating from

ethanol and thus can slow down the citric acid cycle that,

under normal conditions, supplies itself reducing equiva-

lents to the respiratory chain. The slackening of the citric

acid cycle leads to various metabolic consequences, the

major part of which derive from decreased oxidation of

acetate, which can originate, as mentioned in the previous

paragraphs, directly by ethanol, even if a consistent part of

the latter would be metabolized in peripheral tissues [80].

The metabolic unbalance derived from the decreased ace-

tate oxidation is primarily reflected on fatty acid oxidation,

fatty acid synthesis, ketone bodies formation and choles-

terol metabolism. Decreased fatty acid oxidation and

increased fatty acid synthesis have been demonstrated

since a long time ago [40, 74, 95, 99, 126]. It was therefore

suggested that ethanol, acting itself as a fuel for

mitochondria, could replace in a ‘‘competitive way’’ fatty

acids that, under normal conditions, represent the major

source of energy for the liver cell.

Today, it is known that the ethanol-induced stimulation

of hepatic triglyceride synthesis depends, to a great extent,

upon the increased expression of the enzymes involved in

fatty acid synthesis that are regulated by the transcription

factor sterol regulatory element-binding protein (SREBP)-1

[123], located in the endoplasmic reticulum. Upon ethanol

feeding, SREBP-1 is proteolytically cleaved to the active

form that translocates to the nucleus, inducing the

expression of the genes coding for lipogenic enzymes.

Pathogenetic mechanisms of the hepatic lesions

produced by ethanol

As it is known, the long lasted debate whether nutritional

deficiencies associated to alcoholism are responsible of

liver injury [15, 49] or whether ethanol per se (or some

proximal metabolite) exerts toxic effects on hepatic cell has

been largely resolved by the introduction of a novel model

for experimental studies based on liquid diets in which

ethanol (36% of total calories) replaces in a isocaloric way

part of carbohydrates. With these diets, considered nutri-

tionally adequate, the alcohol assumption in the rat was

greatly increased and hepatic lesions (hepatic steatosis)

were obtained in both rats and humans [76, 77]. These

lesions therefore apparently were independent of nutritional

deficiencies. Subsequently, with the use of primates as

experimental animals, a sequential production of fatty liver,

inflammatory reactions, necrosis, fibrosis and sclerosis has

been obtained [78] upon prolonged ethanol feeding.

The ethanol-induced ultrastructural changes of the liver

cell involve both the mitochondria and the endoplasmic

reticulum. The mitochondrial changes consist of enlarge-

ment, swelling, shortening and disorganization of the

cristae, decreased number or absence of matrix granules

and intramitochondrial crystalline inclusions. The presence

of bizarre shapes and giant mitochondria [61, 63] with an

increased matrix density was also reported [56, 66, 72, 97].

The changes involving the endoplasmic reticulum [109]

consist of a marked proliferation of the smooth membranes

with abundant vesicular structures. The alterations of the

endoplasmic reticulum are, according to [56], the first

morphological changes detectable in the liver cell after

ethanol feeding to rats; they were observed, in fact, after

few days of alcohol administration, while mitochondrial

changes appeared some days later. Autophagic vacuoles,

containing altered mitochondria, and residual dense bodies

were also described. The presence of hyaline Mallory

bodies was repeatedly documented. An increased number

of peroxisomes were also reported [12], which is consistent

with the increased catalase activity.
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The morphological changes of mitochondria have a

functional counterpart, consisting in a decrease in cyto-

chrome a, a3 and b [21, 62, 110], of the enzymatic activ-

ities of the Krebs cycle [21, 110] and in general of the

respiratory control [45, 59]. Many of these alterations are

stable and can be in turn responsible for the changes in

lipid metabolism produced by ethanol oxidation itself.

Ethanol-induced mitochondrial changes also involve the

autochthonous synthesis of some mitochondrial proteins,

thus producing an unbalance between proteins synthesized

in mitochondria and those synthesized in the endoplasmic

reticulum. Such unbalance could influence the mitochon-

dria biosynthesis.

The toxic effects of acetaldehyde

That ethanol-induced liver changes are in part mediated by

the proximal metabolite acetaldehyde that has been pro-

posed since a long time ago and reconsidered when it has

been observed [21] that many of the earlier mentioned

ethanol-induced mitochondrial changes are reproduced by

acetaldehyde. In particular, the addition of acetaldehyde to

isolated mitochondria at concentrations of the same order

as those occurring in the liver actively oxidizing ethanol

(1–3 mM), inhibits mitochondrial respiration at the level

of complex I (NADH-ubiquinone oxido-reductase) and the

coupling site I of oxidative phosphorylation [21, 22].

Moreover, acetaldehyde inhibits, at the same concentra-

tions, fatty acid oxidation, and such inhibition seems to be

due to the inhibition of b-oxidation, citric acid cycle and

oxidative phosphorylation [24]. The inhibition of the

oxidation of NAD?-dependent substrates [21] and the

inhibition of fatty acid oxidation [24] do not seem to

depend from a competition of acetaldehyde with such

substrates for NAD?. It has been suggested [23, 25], on

the other hand, that acetaldehyde could interact with sul-

phydryl groups involved in oxidative phosphorylation

particularly with those essential for the complex I (NAD?

ubiquinone-oxydoreductase) which is the site of the

respiratory chain mainly affected by both acetaldehyde

and ethanol. Thus, the block of –SH groups would be

responsible for the alterations. The reaction of acetalde-

hyde and other alkanals with cysteine has been actually

known since many decades (formation of thiazolidine-

carboxylic acids) and other low molecular weight thiols

(reduced glutathione, GSH, in particular) can also be

involved in this reaction. In effect, ethanol toxicity is

always accompanied by a decrease in hepatic GSH con-

tent. If, as we will see later, lipid peroxidation is going to

develop in ethanol hepatotoxicity, much more reactive

aldehydes (alkenals and 4-hydroxyalkenals) will be

formed and a much higher reactivity toward –SH groups

and other nucleophiles has to be expected.

Finally, the acetaldehyde-produced alterations of the

mitochondrial functions impair the mitochondrial acetal-

dehyde metabolism [51], thus producing worsening of the

damage by a vicious cycle.

Ethanol-induced oxidative stress

It has been known since a long time ago that prior

administration for a variety of substances known as anti-

oxidants affords a marked protection against the liver

damage induced by CCl4 and other hepatotoxins [44, 54]. It

was subsequently demonstrated [29, 31, 36] that CCl4 both

administered in vivo or added in vitro to liver preparations

markedly increases the peroxidation of liver lipids, as

measured by malonil dialdehyde (MDA) formation. Such a

pro-oxidant effect of CCl4 was immediately confirmed by

Recknagel and Ghoshal [100, 101]. The theoretical back-

ground for these studies was suggested by [18] and [125],

who proposed that in the hepatic cell, CCl4 could undergo a

homolytic cleavage yielding free radicals (CCl3
� , CCl3OO�,

etc.). The latter could rapidly interact with neighboring

molecules, such as proteins, nucleic acid, thiols and

membrane unsaturated fatty acids. The latter interaction

would set into motion lipid peroxidation that seriously

affects membrane structure and function. Since antioxidant

pretreatment [37] was also found to be effective in ethanol-

induced liver damage, it was suggested [38] that the liver

injury produced by CCl4 or ethanol could have a common

pathogenetic mechanism, namely, oxidative stress1 and

peroxidation of liver lipids. It was subsequently found

[30, 32] that, as in the case of CCl4, the MDA production

by incubated liver homogenates is greatly enhanced during

1, 2, 4, 6 and 12 h after acute ethanol administration. The

increase in liver lipid peroxidation precedes the accumu-

lation of triglycerides in the liver, thus excluding that the

enhanced MDA formation could result from the increased

hepatic fat content; the latter possibility is also ruled out by

the fact that no increased MDA production occurs 24 h

after ethanol dosing when the hepatic triglyceride level is

maximum. Furthermore, it was shown [32] that ethanol

added in vitro to liver homogenates has a pro-oxidant effect

although to a lesser extent than carbon tetrachloride. The

effect is specific for the liver tissue, since ethanol, either in

vitro or in vivo, has no effect on the peroxidation of brain

[48] or other tissue homogenates [114].

It was proposed [32] that ethanol or its metabolites stress

the ‘‘peroxidative balance’’ of the liver cell [16] toward

autoxidation, either acting as pro-oxidant or lowering the

cellular antioxidant level. Direct evidence for increased

1 Oxidative stress is generally considered as a disturbance in the pro-

oxidant/antioxidant balance in favor of the former, leading to

potential damage [47].
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hepatic lipoperoxidation in vivo after acute ethanol intox-

ication was forwarded by Kalish and Di Luzio [58], who

showed that the peroxide content was increased in the liver

in ethanol-treated rats. Hashimoto and Recknagel [50], on

the contrary, found no evidence of conjugated diene

absorption characteristic of peroxidized lipids [17] in the

lipids of any subcellular fraction at any time after acute

ethanol intoxication. On the basis of these results, it was

concluded that in the case of ethanol-induced liver injury,

there is no direct evidence for the in vivo occurrence of

hepatic lipoperoxidation. Di Luzio [39] questioned the

above results and showed that the absorption of conjugated

dienes can be detected in the mitochondrial but not in the

microsomal lipids of ethanol-treated rats. On the other

hand, Corongiu et al. [35] demonstrated the absorption of

conjugated dienes in microsomal lipids of ethanol-treated

animals by the second-derivative spectroscopy.

An approach to the problem with different technical

procedures was then devised. Since the end result of lipo-

peroxidation is a decrease in the most highly unsaturated

fatty acids, which are the major peroxidizable substrates, a

decrease in their content in the lipids of isolated subcellular

fractions could indicate, among other possibilities, that a

peroxidative breakdown of these moieties had actually

occurred in vivo. As a matter of fact, a progressive

decrease in the arachidonic acid content of liver micro-

somal phospholipids was observed [33] shortly after carbon

tetrachloride intoxication; it was also observed, in contrast

with liver phospholipids, that hepatic triglycerides do not

show any change in arachidonic acid content after poi-

soning, again suggesting that lipid peroxidation involves

structural lipids rather than the lipids accumulating in the

liver as a result of the intoxication. A clear decrease in the

arachidonic and docosahexaenoic acid content of liver

mitochondrial lipids from acutely ethanol-treated rats was

actually found [34]. In contrast with the mitochondrial

changes, ethanol did not induce a decrease in the most

unsaturated components of the fatty acid pattern of liver

microsomal phospholipids [34].

A decrease in arachidonic as well as an increase in

linoleic acid content of liver mitochondrial lipids was also

observed by French et al. [43] after chronic ethanol

administration, but these changes were mainly attributed to

alterations in the activity of the chain elongation desatu-

ration system.

Implication of oxidative stress in ethanol toxicity would

imply that either ethanol is converted, during its metabo-

lism, to a free radical intermediate or that ethanol or its

metabolites react with some nucleophile in an antioxidant

molecule, thus blocking the molecule and decreasing the

antioxidant potential. The latter possibility has been shown

above (reaction of acetaldehyde with –SH groups of cys-

teine or GSH), but the loss of GSH is by far smaller than

that occurring with many other GSH depletors (bromo-

benzene, allyl alcohol, etc. [28]) and cannot account by

itself for the induction of lipid peroxidation. The former

possibility—the formation of a free radical during ethanol

metabolism—was postulated by Slater [113] since many

years ago. Ethanol may enter free radical reaction rela-

tively easily [111], through the interaction with some

endogenous radical; the latter could give rise to a homo-

lytic cleavage of ethanol yielding a reducing ethoxy radical

(CH3–CH2O�), which in the presence of some oxidant

would be converted to acetaldehyde:

R� þ C2H5OH! RHþ C2H5O�

C2H5O� þ X! C2H4Oþ XH�

(from [113]).

Several endogenous radicals are known to be involved

in the NADPH-cytochrome P450 chain; ethanol may inter-

act at this site during its metabolism in MEOS. Also, in the

scheme proposed for the action of catalase-free radical

intermediates of the hydrogen donor are formed; if ethanol

is the donor, free radical intermediates from ethanol can

result.

More recent studies have conclusively shown that eth-

oxy radical is really generated during ethanol oxidation and

that an oxidative stress is imposed on the liver cell as a

result of ethanol metabolism [94]. Several sources of such

an oxidative stress have been described. Ethanol oxidation

results in the production of free radicals, which can derive

from both oxygen and ethanol itself. Oxygen radicals can

originate as follows: microsomal NADPH-cytochrome c

reductase and cytochrome P450 (components of MEOS) can

generate O2
�- and H2O2 [52, 53, 65, 93, 124]; the same

oxygen species can be produced by aldehydes oxidase and

xanthine oxidase [85], both involved in the metabolism of

ethanol-derived acetaldehyde; O2
�- and H2O2 can also be

generated by microsomal NADPH oxidase, which has been

shown to be increased after acute [120] or chronic [70, 104,

119, 122] ethanol administration; during NADPH oxida-

tion liver microsomes produce significant amount of OH�

(being H2O2 the precursor), which in turn appears to be

required for ethanol oxidation [20, 26, 55].

With regard to ethanol-derived radicals, it has been

shown [4, 5] that ethanol is activated to a free radical

intermediate by the ethanol inducible form of cytochrome

P450, i.e., the specific isoenzymatic form involved in MEOS,

CYP2E1. With the use of electron spin resonance (ESR)

spectroscopy in combination with the spin trapping agent

4-pyridyl-1-oxo-t-butyl nitrone (4-POBN), it has been

demonstrated [4, 5] that rat liver microsomes incubated with

ethanol and NADPH can produce a free radical intermedi-

ate, identified as 1-hydroxyethyl radical. Free radical

intermediates are also produced by liver microsomes during

the metabolism of various aliphatic alcohols (1-propanol,

Genes Nutr (2010) 5:101–109 105

123



2-propanol, 1-butanol, 2-butanol and 1-pentanol), indicating

the existence of a common activating pathway for these

compounds [5, 7]. The formation of radical intermediates

has been confirmed in the whole animal in vivo with the use

of 4-POBN [8, 60, 102, 103]. The generation of ethanol

radicals would occur during the process of univalent

reduction of dioxygen and possibly would be carried out by

ferric cytochrome P450 oxy-complex (P450–Fe3?O2
�-)

[10, 11] formed during the reduction of heme-oxygen. In

such a state, cytochrome would be sufficiently reactive to

abstract a proton from the 1-carbon of ethanol, yielding a

carbon-centered radical and H2O2 [116]. Alternatively,

hydroxyethyl radicals could be produced by addition to

ethanol of OH� radicals generated by liver microsomes [81].

However, generated hydroxyethyl radicals bind to micro-

somal protein [9], particularly CYP2E1, and probably play

an important role in the induction of lipid peroxidation

[6, 42]. The binding of alcohol radical to protein represents

another mechanism of hepatic protein alkylation in addition

to that operated by acetaldehyde [41] and known to con-

tribute to overall liver cell damage. Furthermore, the

hydroxyethyl radical-derived protein adducts are immuno-

genic and give rise to antibodies different from those

generated by acetaldehyde-derived protein adducts [88].

Chronic alcohol feeding of rats leads to the production of

antibodies that recognize hydroxyethyl rat serum albumin

but do not recognize rat serum albumin [88]. Moreover, sera

of alcoholic cirrhotic patients contain IgG and IgA anti-

bodies that recognize proteins modified by hydroxyethyl

radicals [27]. Such antibodies may play an important role in

the immunologic reactions triggered by ethanol and due to

antibodies against liver cells found in the serum of patients

with alcoholic liver injury [46].

Ethanol-induced oxidative stress as measured

by F2-isoprostane determination

A great advance in the study of oxidative stress has been

represented by the demonstration [89, 90, 106] of the for-

mation of a series of prostaglandin F2-like compounds,

named F2-isoprostanes, which originate in vitro and in vivo

from the peroxidation of phospholipids bound arachidonic

acid. Since F2-isoprostanes, which are initially formed in

situ on phospholipids [91], are released into the blood

compartment and since these prostanoids are much less

reactive than other lipid peroxidation products such as

lipoperoxides and aldehydes, they can be found more easily

in plasma and urine. Elevated levels of F2-isoprostanes

have been found in various human pathologies [105].

Therefore, we reconsidered the whole problem of ethanol-

induced oxidative stress with this methodological

approach, which is nowadays considered as the most

sophisticated and reliable technique to evaluate oxidative

stress, at least when the determinations are carried out by

gas-chromatography mass spectrometry. Plasma F2-iso-

prostanes are increased in ethanol toxicity ([92, 86, 13, 96],

Comporti et al. unpublished work).

Final considerations

Owing to the fact that this review is concerned with the

mechanisms inducing oxidative stress upon ethanol expo-

sure (particularly acute exposure), no attention has been

paid to the development of alcoholic liver disease and its

progression to liver fibrosis. Thus, no mention has been

done of the impairment of endogenous antioxidant defen-

ces, accumulation of unfolded proteins and endoplasmic

reticulum stress [84, 112], AMP-dependent protein Kinase

(AMPK) and adiponectin-regulated hepatic lipid metabo-

lism [107], translocation of gut derived endotoxins to portal

circulation [98], activation of Kupffer cells and release of

proinflammatory cytokines (TNFa in particular), role of

immune reactions in alcoholic-induced inflammation and

progression to liver fibrosis through activation of hepatic

stellate cells.

Extensive information about the above topics can be

found in several reviews [2, 3, 79].
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