
RESEARCH PAPER

Associations between functional polymorphisms in antioxidant
defense genes and urinary oxidative stress biomarkers in healthy,
premenopausal women

Umaima Al-Alem • Peter H. Gann • Jeffrey Dahl •

Richard B. van Breemen • Vilas Mistry • Patricia M. W. Lam •

Mark D. Evans • Linda Van Horn • Margaret E. Wright

Received: 23 July 2011 / Accepted: 17 October 2011 / Published online: 9 November 2011

� Springer-Verlag 2011

Abstract Functional polymorphisms in endogenous

antioxidant defense genes including manganese superoxide

dismutase (MnSOD), catalase (CAT), and glutathione

peroxidase (GPX-1) have been linked with risk of cancer at

multiple sites. Although it is presumed that these germline

variants impact disease risk by altering the host’s ability to

detoxify mutagenic reactive oxygen species, very few

studies have directly examined this hypothesis. Concen-

trations of 8-isoprostane F2a (8-iso-PGF2a) and 8-oxo-7,

8-dihydro-20-deoxyguanosine (8-oxoxdG)—sensitive indi-

cators of lipid peroxidation and DNA oxidation, respec-

tively—were measured in 24-h urine samples obtained

from 93 healthy, premenopausal women participating in a

dietary intervention trial. In addition, DNA was extracted

from blood for genotyping of MnSOD Val16Ala, CAT-262

C [ T, and GPX1 Pro198Leu genotypes by Taqman assay.

Although geometric mean concentrations of 8-iso-PGF2a

and 8-oxoxdG varied across several study characteristics

including race, education level, body mass index, and

serum antioxidant levels, there was little evidence that

these biomarkers differed across any of the examined

genotypes. In summary, functional polymorphisms in

endogenous antioxidant defense genes do not appear to be

strongly associated with systemic oxidative stress levels in

young, healthy women.
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Introduction

Oxidative damage to DNA, lipids, and proteins due to

excessive levels of reactive oxygen species (ROS) has been

implicated in the pathogenesis of many diseases, including

cancer (Roberts et al. 2009). Although antioxidants

obtained through the diet afford some measure of protec-

tion against ROS, endogenous antioxidant enzymes pro-

vide the primary defense against intracellular oxidative

stress (Yu 1994). Manganese superoxide dismutase

(MnSOD), catalase (CAT), and glutathione peroxidase

(GPX-1) are the primary endogenous antioxidant defense

enzymes, and they work cooperatively to detoxify free

radicals: MnSOD catalyzes the conversion of highly reac-

tive superoxide radicals to hydrogen peroxide and CAT

and GPX-1 detoxify hydrogen peroxide into water and

oxygen (Yu 1994). The genes encoding these enzymes

are polymorphic and three germline single nucleotide

polymorphisms (SNPs)—MnSOD Val16Ala (rs4880),

CAT-262 C [ T (rs1001179), and GPX1 Pro198Leu
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(rs1050450)—lead to alterations in enzyme activity. While

the CAT and GPX1 polymorphisms result in decreased

enzyme activity (Bastaki et al. 2006), both higher (Sutton

et al. 2006) and lower (Bastaki et al. 2006) activity has

been associated with the MnSOD variant.

The MnSOD, CAT, and GPX1 variants have each been

linked with risks of multiple cancers. Some of the most

consistent associations have been observed for breast

cancer, either directly or indirectly through interactions

with dietary intakes of antioxidant nutrients/antioxidant-

rich foods or prooxidant lifestyle exposures (Ambrosone

et al. 1999; Mitrunen and Hirvonen 2001; Cai et al. 2004;

Ahn et al. 2005; Ravn-Haren et al. 2006). It is generally

presumed that these polymorphisms influence cancer risk

by altering the host’s ability to neutralize toxic free radi-

cals. While results from in vitro and knockout mouse

model studies support this (Melov et al. 1999; Van Rem-

men et al. 2003, 2004), there are very few reports

describing oxidative stress levels in relation to the afore-

mentioned genetic variants in humans. We therefore eval-

uated whether urinary concentrations of 8-isoprostane F2a
(8-iso-PGF2a) and 8-oxo-7,8-dihydro-20-deoxyguanosine

(8-oxoxdG)—sensitive indicators of global lipid peroxi-

dation (Halliwell and Whiteman 2004) and DNA oxidation

(Cooke et al. 2009), respectively—vary across the MnSOD

Val16Ala, CAT-262 C [ T, and GPX1 Pro198Leu geno-

types in a population of young healthy women.

Materials and methods

The Diet and Hormone Study was a randomized trial

designed to examine the effects of a low fat (\20% of

calories), high fruit and vegetable ([8 servings per day),

and high-fiber (25–30 g per day) diet on hormone levels in

healthy premenopausal women (Gann et al. 2003). Two

hundred and thirteen women between the ages of 20 and

40 years were randomly assigned to either the dietary

intervention group or usual diet group for a total of

15 months. At 12 months, participants were re-randomized

to a soy supplement with or without isoflavones in addition

to their original dietary assignment. Written informed

consent was obtained from each participant prior to ran-

domization, and Institutional Review Board Approval for

the present ancillary study was secured.

The present analysis is based on women randomized to

the usual diet (control) group who provided demographic,

lifestyle, dietary, and medical information, as well as

fasting blood and a 24-h urine sample, at baseline (prior to

randomization). At baseline, participants completed three

24-h diet recalls and a validated Block food frequency

questionnaire (FFQ); the three recalls were averaged to

estimate the mean dietary intake of macro- and

micronutrients, while the FFQ was utilized to capture

vitamin supplement use. Baseline fasting blood samples

were processed immediately after collection; plasma, buffy

coat, and red blood cells were separated, aliquoted, and

stored at -70�C. Upon return of the 24-h urine collection,

the entire sample was mixed thoroughly, aliquoted, and

stored at -70�C. Urinary concentrations of 8-iso-PGF2a
and 8-oxoxdG were successfully measured in 87 and 93 of

the 107 participants randomized to the usual diet group.

Genomic DNA was isolated from buffy coat samples and

TaqMan� assays (Applied Biosystems) were used to genotype

the three polymorphisms of interest. There were no deviations

from Hardy–Weinberg Equilibrium for any SNP. Repeat

genotyping of 10% of samples showed 100% concordance.

8-iso-PGF2a was measured using a rapid liquid chroma-

tography-tandem mass spectrometry (LC–MS/MS) assay

(Dahl and van Breemen 2010). Urinary 8-oxoxdG levels were

quantified using ultra-high performance LC–MS/MS (Lam

et al. in preparation). In order to monitor the reproducibility of

each assay, de-identified urine samples were obtained from

the University of Illinois at Chicago Clinical Pathology lab

and mixed together to create a quality control pool; multiple

aliquots of this pool were analyzed with each batch of study

samples. The average intra- and inter-batch coefficients of

variation were 17 and 24% for 8-iso-PGF2a and 3 and 10% for

8-oxoxdG, respectively.

8-iso-PGF2a and 8-oxoxdG values were log-transformed

and geometric mean concentrations and 95% confidence

intervals across study characteristics and genotypes were

determined using generalized linear models in SAS version

9.1.3 (SAS Institute, Cary, NC).

Results

Study participants were young, predominantly Caucasian,

well educated, physically active and lean, and most did not

currently smoke. Higher 8-iso-PGF2a concentrations were

observed in African Americans, among women without a

college degree, in those who were overweight or obese, and

in participants in the lowest tertile of serum a-carotene

(Table 1)—a nutrient concentrated in fruits and vegetables

that displays in vitro antioxidant activity. 8-oxoxdG exhib-

ited similar patterns, and it was additionally noted that levels

were highest in the least physically active women and among

those who reported taking aspirin at any time during the past

year. Neither of these biomarkers demonstrated significant

variation across categories defined by antioxidant supple-

ment use, levels of serum antioxidants other than a-carotene,

fruit and vegetable intake, nor intakes of individual anti-

oxidant or prooxidant nutrients (data not shown). There were

no significant trends in either biomarker across any of the

antioxidant defense genotypes (Table 2). Although there
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was a suggestion of lower 8-iso-PGF2a and higher 8-oxoxdG

concentrations among women with the homozygous variant

CAT genotype, these results should be interpreted with

caution as very few participants carried two copies of the

variant CAT allele.

Discussion

In this study, urinary biomarkers of oxidative stress did not

exhibit significant variation across functional germline

SNPs in the primary endogenous antioxidants enzymes,

MnSOD, CAT, and GPX-1. One potential explanation is

that our study population consisted of young, healthy

women with limited oxidative burden but who nonetheless

are at an age when tumor development might begin.

Alternatively, genotype-phenotype associations might only

be apparent when the aforementioned SNPs are considered

in combination, particularly since they act cooperatively in

the body. Unfortunately, our sample size did not permit this

type of analysis. Six studies have investigated whether

oxidative stress levels vary as a function of antioxidant

Table 1 Unadjusted geometric mean concentrations of urinary biomarkers of oxidative stress according to study characteristics

Characteristics 8-isoprostane F2a (pg/ml)

n = 87

8-oxo-7,8-dihydro-20-deoxyguanosine (pmol/ml)

n = 93

n Mean (95% CI) P-valuea n Mean (95% CI) P-valuea

Age (years)

\30 27 183 (131, 255) 0.25 29 9.82 (8.35, 11.54) 0.10

30–34 26 133 (94, 186) 28 8.21 (6.96, 9.68)

C35 34 190 (141, 257) 37 10.36 (8.98, 11.96)

Raceb

Caucasian 68 157 (128, 193) 0.04 71 9.28 (8.35, 10.32) 0.71

African American 9 286 (163, 501) 13 11.23 (8.77, 14.38)

Hispanic 4 262 (113, 608) 4 9.55 (6.11, 14.92)

Asian 5 88 (41, 187) 5 8.86 (5.94, 13.2)

Education

\College degree 13 254 (157, 410) 0.07 15 11.56 (9.23, 14.48) 0.06

CCollege graduate 74 157 (128, 192) 79 9.16 (8.31, 10.11)

Smoking status

Never 60 162 (129, 204) 0.43 65 9.96 (8.93, 11.11) 0.24

Former 23 169 (117, 244) 24 8.33 (6.96, 9.96)

Current 4 294 (122, 706) 5 9.85 (6.65, 14.59)

Body mass index (kg/m2)

\25 64 150 (121, 186) 0.04 67 9.45 (8.48, 10.54) 0.84

C25 23 234 (164, 335) 27 9.65 (8.13, 11.45)

Physical activityc

Light 25 206 (145, 292) 0.28 27 10.94 (9.26, 12.93) 0.08

Moderate 40 167 (127, 220) 43 9.39 (8.22, 10.72)

Heavy 22 136 (94, 198) 24 8.31 (6.96, 9.92)

Aspirin used

No 59 176 (140, 221) 0.52 63 8.78 (7.88, 9.78) 0.01

Yes 28 154 (111, 215) 31 11.18 (9.59, 13.05)

Serum a-carotene (lg/dl)

\5.1 27 266 (195, 363) 0.001 31 9.92 (8.45, 11.65) 0.74

5.1–8.35 27 172 (126, 234) 30 9.08 (7.71, 10.69)

[8.35 30 115 (86, 154) 30 9.43 (8.01, 11.1)

a P-value from ANOVA F-test
b Excludes 1 individual classified as ‘‘other’’
c Based on the validated CARDIA physical activity score (Sidney et al. 1991)
d Ever use during the past 12 months
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defense genotypes (Hong et al. 2002; Taufer et al. 2005;

Lee et al. 2006; Park et al. 2006; Zhang et al. 2008;

Karahalil et al. 2011), with three showing higher DNA

damage levels among carriers of the MnSOD variant

alanine (Hong et al. 2002; Taufer et al. 2005) or GPX-1

variant Leu (Lee et al. 2006) alleles. Notably, only one

study was conducted in young, non-diseased individuals

(Park et al. 2006), and the results from this study were

concordant with our own.

A significant strength of our study is the use of two

measures of oxidative stress that have demonstrated

reproducibility, biological validation by virtue of consistent

associations with disease states and known stressors such

as smoking, and evidence of modulation by antioxidants

and/or antioxidant-rich foods. For example, levels of 8-iso-

PGF2a are elevated in active or passive smokers and can be

reduced by vitamin C or increased fruit and vegetable

intake in some studies (Reilly et al. 1996). With respect to

8-oxoxdG, studies have found its levels to be higher in

smokers (Pilger et al. 2001) and in individuals with lower

fruit and vegetable intake and serum vitamin C concen-

trations (Huang et al. 2000). Several small trials have also

shown that administration of fruits and vegetables decrea-

ses 8-oxoxdG concentrations in healthy human volunteers

(Halliwell 2002). Other strengths of our study include

measurement of each analyte in urine rather than blood,

which avoids potential artifactual oxidation (Patel et al.

2007); use of 24-h rather than spot urine samples, which

are more robust to intra-individual variability in biomark-

ers (Pilger et al. 2001); and measurement of analytes by the

sensitive mass spectrometry (rather than ELISA) approach

(Evans et al. 2010). Finally, DHS participants were young and

healthy, which minimized the effects of preclinical or overt

disease on concentrations of oxidative stress biomarkers.

Limitations of our study include the relatively small

number of subjects available for analysis and our reliance

on previous reports showing that the three polymorphisms

of interest are functional. Unfortunately, budgetary con-

straints precluded measurement of antioxidant enzyme

activities in DHS subjects.

In summary, our findings do not support the hypothesis

that polymorphisms in MnSOD, CAT, and GPX-1 are

associated with systemic biomarkers of oxidative stress in

young, healthy women. Future studies should examine the

combined effects of all three genetic variants on oxidative

stress levels, and whether these associations are modified

by antioxidative or prooxidative lifestyle exposures.
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