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Abstract Meat intake is associated with the risk of

colorectal cancer. The objective of this systematic review

was to evaluate interactions between meat intake and

genetic variation in order to identify biological pathways

involved in meat carcinogenesis. We performed a literature

search of PubMed and Embase using ‘‘interaction’’,

‘‘meat’’, ‘‘polymorphisms’’, and ‘‘colorectal cancer’’, and

data on meat–gene interactions were extracted. The studies

were divided according to whether information on meat

intake was collected prospectively or retrospectively. In

prospective studies, interactions between meat intake and

polymorphisms in PTGS2 (encoding COX-2), ABCB1,

IL10, NFKB1, MSH3, XPC (Pint = 0.006, 0.01, 0.04, 0.03,

0.002, 0.01, respectively), but not IL1B, HMOX1, ABCC2,

ABCG2, NR1I2 (encoding PXR), NR1H2 (encoding LXR),

NAT1, NAT2, MSH6, or MLH1 in relation to CRC were

found. Interaction between a polymorphism in XPC and

meat was found in one prospective and one case–control

study; however, the directions of the risk estimates were

opposite. Thus, none of the findings were replicated. The

results from this systematic review suggest that genetic

variation in the inflammatory response and DNA repair

pathway is involved in meat-related colorectal carcino-

genesis, whereas no support for the involvement of heme

and iron from meat or cooking mutagens was found. Fur-

ther studies assessing interactions between meat intake and

genetic variation in relation to CRC in large well-charac-

terised prospective cohorts with relevant meat exposure are

warranted.

Keywords Colorectal carcinogenesis � Genetic

susceptibility � Genetic epidemiology � Polymorphisms �
Gene–environment interactions � Diet–gene interactions �
Lifestyle

Introduction

Colorectal cancer (CRC) is a major health problem

worldwide. In the Western World, CRC is the third most

common cancer and the one with the second highest

mortality (WCRF 2014). In the developing countries, the

incidence is increasing due to demographic changes and

due to implementation of Western lifestyle. Lifestyle fac-

tors, including diet, are considered to be the main causes of

CRC (WCRF 2014). High intake of red and processed

meat, animal fat, alcohol, and smoking is the factor that has

been associated with the risk of CRC, whereas high intake

of dietary fibres, fruit and vegetables, and physical activity

is considered to protect from CRC (Huxley et al. 2009;

WCRF 2014). The World Cancer Research Fund has

evaluated observational and experimental evidence linking
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the intake of red and processed meat to CRC as convincing

(WCRF 2014). Furthermore, they judged that half of all

CRC cases may be prevented by relevant lifestyle changes

(WCRF 2014). Accordingly, advancing the understanding

of underlying mechanisms for developing CRC may have

large implications for human health by forming the basis

for preventive interventions.

Various mechanisms by which intake of red and pro-

cessed meat may promote colorectal carcinogenesis have

been suggested (Santarelli et al. 2008; Ferguson 2010;

Alexander and Cushing 2011; Alexander et al. 2011; Chan

et al. 2011; Erridge 2011; Zur 2012). Meat is a source of

fat, protein, dietary iron, zinc, sulphur, and vitamins and

may contain microbes developed during storage, various

additives, cooking mutagens, and antibiotics. These meat

compounds may be carcinogenic by various mechanisms as

illustrated in Fig. 1. For example, heterocyclic amines

(HAC), polycyclic aromatic hydrocarbons (PAH), and N-

nitroso compounds (NOC) present in meat or arising during

processing and cooking at high temperature may introduce

DNA damage leading to the generation of mutations and

cancer (Santarelli et al. 2008). The carcinogenic effects

will depend on the efficiency of the human metabolism of

the compound (activation, degradation, or excretion) and

on the efficiency of repair of the DNA damage (Fig. 1).

Hence, HCAs may be activated by N-acetyltransferases

(encoded by NAT1 and NAT2) to form carcinogens acting

in the colon epithelium, whereas phase II xenobiotic met-

abolising enzymes such as UDP-glucuronosyltransferases

(encoded by the UGTs) may detoxify the cooking carcin-

ogens (Gilsing et al. 2012; Ollberding et al. 2012). Also,

protein fermentation by the colonic bacteria may lead to

the formation of carcinogenic substances such as hydrogen

sulphide (H2S) (Hamer et al. 2012; Windey et al. 2012;

Andersen 2014a). In particular, meat contains high

amounts of fat and proteins, including organic sulphur-

containing proteins, which may contribute to enhance the

microbial production of H2S. This leads to DNA damage,

up-regulation of pro-inflammatory COX-2, and suppression

of anti-inflammatory butyrate. Thus, a diet high in animal

fat was found to increase the amount and activity of the

Bilophila Wadsworthia in an animal model (Devkota et al.

2012). Because this bacterium reduces sulphite (SO3
2-)

from diet to H2S by anaerobic oxidation and because meat

is a particularly rich source of organic sulphur, this results

in high colonic production of H2S (Carbonero et al. 2012).

Besides inducing DNA damage, H2S and its ion sulphide

(S2-) has been associated with the up-regulation of COX-

2; impaired oxidation of butyrate, which is the most

important fuel in the intestinal cells (Windey et al. 2012);

and induction of intestinal hyperproliferation (Carbonero

et al. 2012). Thus, meat intake, intestinal microbes, and

individual factors may interact and affect intestinal

inflammation (Jia et al. 2012). Furthermore, a diet high in

fat may increase the risk of CRC by hormonal mechanisms

(Fig. 1). Moreover, n-6 polyunsaturated fatty acids (n-6

PUFAs) from meat are converted into arachidonic acid that

is further metabolised by the cytochrome P450 oxygenase

(CYP), the cyclooxygenase (COX), and the lipoxygenase

(LOX) pathways to pro- and anti-inflammatory prosta-

glandins (PG) and leukotrienes (LT) including PGE2 and

LTB4, which have been found to be involved in colorectal

carcinogenesis (Wang and DuBois 2010a, b; 2013). Also,

indications that microbial factors present in meat or arising

during storage may be involved in CRC have been found in

(Erridge 2011; Zur 2012). Thus, intake of meat may

potentially affect intestinal homeostasis by a range of

various mechanisms leading to somatic mutations, epige-

netic changes, and impaired balance between proliferation

and apoptosis resulting in cancer development as summa-

rised in Fig. 1.

Genetically determined variations in the activity of

enzymes or pathways may modify the processes mentioned

in Fig. 1 and thereby influence meat-related risk of CRC.

Hence, assessment of gene–environment interactions pro-

vides a tool to identify the combinations of genes and

environmental factors involved in CRC because the pre-

sence of an interaction indicates that the two factors are

involved in the same process (Vogel et al. 2007; Andersen

et al. 2009, 2010, 2012a, b, 2013a, b). Furthermore, use of

functional polymorphisms, i.e. polymorphisms which lead

to changed protein activity, may help the biological

understanding. Gene–environment interaction studies may

generate knowledge on biological mechanisms and may

provide indications for primary prevention. In gene–envi-

ronment interaction studies, human metabolism and the

complexity of lifestyle factors are taken into account. This

is difficult to achieve by other means. We therefore

reviewed the literature on interactions between meat intake

and polymorphisms in relation to CRC in order to identify

pathways involved in the effects of meat intake.

Methods

A systematic review was carried out according to the

guidelines of Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) statement (Moher

et al. 2009) (Fig. 2). PubMed and Embase were searched

for various combinations of ‘‘meat’’, ‘‘colorectal cancer’’,

‘‘snp(s)’’, ‘‘gene variant’’, and ‘‘polymorphisms’’ [e.g.

(‘‘red and processed meat’’ OR ‘‘red meat’’ OR ‘‘processed

meat’’ OR ‘‘meat’’) AND ‘‘colorectal cancer’’ AND

(‘‘genetic’’ OR ‘‘polymorphism’’ OR ‘‘polymorphisms’’

OR ‘‘gene variants’’ OR ‘‘snps’’ OR ‘‘snp’’)] with no

restrictions (e.g. on years considered) resulting in 239
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Meat factors Mechanisms Examples Potential candidate genes GE-studies

Heme and iron from heme Heme/Iron 

conversion

Converts heme to iron (heme; 

genotoxic N-nitroso compounds, iron; 

oxidative damage)

HMOX1 Andersen et al. (2011)

Cooking mutagens and 

carcinogens

Metabolism Activate/detoxificate compounds by 

bioconversion

NATs, CYP1A2, CYP1B1, 

CYP2E1, GSTs, UGTs, 

NQO1, EPHX1, 

Chen et al. (1998), Le Marchand et al. 

(2002), Tiemersma et al. (2002), Turner 

et al. (2004), Chan et al. (2005), Little et 

al. (2006), Kury et al. (2007), Butler et al. 

(2008), Cotterchio et al. (2008), Girard et 

al. (2008), Sorensen et al. (2008), Joshi et 

al. (2009), Morita et al. (2009), Nothlings 

et al. (2009), Yeh et al. (2009), Wang et 

al. (2012)

DNA repair Mismatch repair, Nucleotide Excision 

Repair (NER), Base Excision repair 

pathway (BER)

MSH2, MLH1, MSH6, 

PMS2, MSH3, XRCC1, 

OGG1, ERCC2 (XPD), 

XPC, XPA, ERCC5 (XPG), 

APEX1, PARP,

Yeh et al. (2005), Berndt et al. (2007), 

Hansen et al. (2007), Brevik et al. (2010)

Antibiotics Microbial effects Increase number/activity of sulphate 

reducing bacteria (Bilophila 

Fat Wadsworthia)

Hormonal effects Insulin resistance CAPN10, ADIPOQ, 

FABP2, IGF1, PPARs

Kuriki et al. (2006), Hu et al. (2013a, b)

Hyperproliferation

Tumour 

suppression

Tumor suppression APC Slattery et al. (2001), Theodoratou et al. 

(2008)

Inflammation Arachidonic acid pathway; n-6 

PUFAs>arachidonic acids>pro- and 

anti-inflammatory mediators

PTGSs, ALOXs, CYPs, Koh et al. (2004), Habermann et al. 

(2013)

Protein Activation of inflammatory response PTGS2, NFKB1, ILs Andersen et al. (2009, 2010, 2013)

Transport of inflammatory mediators? ABCB1, ABCC2, ABCG2

Suppress inflammation PPARs

Inhibits histone acetylation and cell 

growth, regulate intestinal 

inflammation (SCFA)

GPCR; FFAR3 (GPR41), 

FFAR2 (GPR43), GPR65, 

FFAR4 (GPR120), HDACs

H2S sulfide oxidation pathway TST

Microbes

Vitamins One carbon 

metabolism 

Co-substrate for homocysteine 

remethylation to methionine

MTHFR

(folate, B6, B12)

Food additives

Fig. 1 Examples of potential mechanisms by which meat may affect colorectal carcinogenesis
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abstracts in total (January, May, and August 2014). Arti-

cles from abstracts suggesting that they presented original

data on polymorphisms and meat interaction were retrieved

and read. All studies which reported original data on meat

intake and gene interactions and which were published in

English were included.

Studies were excluded due to missing data on the

interaction analyses between meat intake and gene variants

in relation to CRC, interaction with meat-related variables

(proxies), and not meat itself was performed and with less

than 25 cases in the subgroup analyses.

Information on study design, the number of partici-

pants, incidence rate ratios (IRR) and odds ratios (OR),

P value for interaction (Pint) from the interaction analyses

between meat intake and polymorphisms in relation to

CRC was retrieved from the studies when present. When

rs number was not provided by the authors, the rs number

was retrieved using PubMed Gene (http://www.ncbi.nlm.

nih.gov/gene/324) by selecting SNP gene view and pro-

vided when the rs number could be unambiguously

identified. Furthermore, polymorphisms which deviated

from Hardy–Weinberg equilibrium were excluded (one

polymorphism).

Pint indicates whether there was statistically significant

interaction between the effects of meat intake and geno-

types in relation to the risk of CRC.

The retrieved studies were divided according to the time

when the information on meat intake was sampled into

prospective studies (data collected before the diagnosis of

CRC, Table 1) and case–control studies (data collected

after the diagnosis of CRC, Table S1). P values adjusted

for confounders and not corrected for multiple testing were

chosen whenever possible (Table 1, Table S1). P value

below 0.05 was considered statistically significant.

Replication of found results in an independent cohort is

an important tool to identify gene–environment interac-

tions in genetic epidemiology (Andersen and Vogel 2014a,

b). In the present work, identification of gene–environment

interactions was performed in the prospective studies

(discovery cohorts). We regarded the finding as replicated

if the results were reproduced in another prospective study

or in a case–control study.

PRISMA 2009 Flow Diagram

Records iden�fied through 
database search 

(n =  239 )

Sc
re

en
in

g 
In

cl
ud

ed
 

El
ig

ib
ili

ty
 

Id
en

�fi
ca

�o
n 

Addi�onal records iden�fied 
through other sources 

(n = 19 )

Records a�er removal of duplicates 
(n = 239 ) 

Records screened 
(n = 239) 

Records excluded 
(n = 193) 

Full-text ar�cles assessed 
for eligibility 

(n =  46)

Full-text ar�cles excluded, 
for various reasons 

(n =  13)

Studies included in 
qualita�ve synthesis 

(n = 33)

Fig. 2 Preferred reporting

items for systematic reviews

and meta-analyses (PRISMA)

flow diagram of the retrieved

studies

448 Page 4 of 14 Genes Nutr (2015) 10:448

123

http://www.ncbi.nlm.nih.gov/gene/324
http://www.ncbi.nlm.nih.gov/gene/324


T
a

b
le

1
In

te
ra

ct
io

n
s

b
et

w
ee

n
m

ea
t

in
ta

k
e

an
d

p
o

ly
m

o
rp

h
is

m
s

in
re

la
ti

o
n

to
th

e
ri

sk
o

f
co

lo
re

ct
al

ca
n

ce
r

in
p

ro
sp

ec
ti

v
e

co
h

o
rt

s

G
en

e
rs

-n
u

m
b

er
d

N
c
a
se

s
N

su
b
-c

o
h
o
rt

IR
R

/O
R

(9
5

%
C

I)
a

P
in

t
b

C
o

m
m

en
ts

c
F

ir
st

au
th

o
r

Y
ea

r
R

ef
er

en
ce

s

C
o

o
ki

n
g

ca
rc

in
o

g
en

s
a

n
d

m
u

ta
g

en
s

N
A

T
1

S
lo

w
1

2
0

1
2

3
4

C
h

en
1

9
9

8
C

h
en

et
al

.
(1

9
9

8
)

N
A

T
*

1
0

al
le

le
R

ap
id

9
2

9
8

0
.1

9
4

C
h

en
et

al
.

(1
9

9
8

)

N
A

T
2

S
lo

w
1

3
1

1
2

5
4

C
h

en
et

al
.

(1
9

9
8

)

R
ap

id
8

1
9

6
0

.5
6

4
C

h
en

et
al

.
(1

9
9

8
)

N
A

T
2

S
lo

w
1

0
7

2
6

7
5

C
h

an
2

0
0

5
C

h
an

et
al

.
(2

0
0

5
)

R
ap

id
7

6
4

7
6

0
.0

7
5

C
h

an
et

al
.

(2
0

0
5

)

N
A

T
1

S
lo

w
0

.9
9

(0
.9

4
–

1
.0

4
)

2
,

3
,

6
S

o
re

n
se

n
2

0
0

8
S

o
re

n
se

n
et

al
.

(2
0

0
8

)

F
as

t
0

.9
8

(0
.9

0
–

1
.0

5
)

[
0

.4
0

2
,

3
,

6
S

o
re

n
se

n
et

al
.

(2
0

0
8

)

N
A

T
2

S
lo

w
1

.0
0

(0
.9

5
–

1
.0

6
)

2
,

3
,

6
S

o
re

n
se

n
et

al
.

(2
0

0
8

)

F
as

t
0

.9
6

(0
.9

0
–

1
.0

3
)

[
0

.4
0

2
,

3
,

6
S

o
re

n
se

n
et

al
.

(2
0

0
8

)

N
A

T
1

N
o

*
1

0
3

6
2

5
2

7
7

N
o

th
li

n
g

s
2

0
0

9
N

o
th

li
n

g
s

et
al

.
(2

0
0

9
)

*
1

0
4

8
2

8
1

8
0

.7
7

7
N

o
th

li
n

g
s

et
al

.
(2

0
0

9
)

N
A

T
2

S
lo

w
/m

ed
7

5
0

1
1

4
9

7
N

o
th

li
n

g
s

et
al

.
(2

0
0

9
)

R
ap

id
2

4
2

3
4

4
0

.4
4

7
N

o
th

li
n

g
s

et
al

.
(2

0
0

9
)

N
A

T
1

N
o

*
1

0
3

6
2

5
2

7
8

N
o

th
li

n
g

s
et

al
.

(2
0

0
9

)

*
1

0
4

8
2

8
1

8
0

.9
3

8
N

o
th

li
n

g
s

et
al

.
(2

0
0

9
)

N
A

T
2

S
lo

w
/m

ed
7

5
0

1
,1

4
9

8
N

o
th

li
n

g
s

et
al

.
(2

0
0

9
)

R
ap

id
2

4
2

3
4

4
0

.1
3

8
N

o
th

li
n

g
s

et
al

.
(2

0
0

9
)

A
H

R
rs

2
0

6
6

8
5

3
3

6
4

3
9

4
0

.0
7

1
2

G
il

si
n

g
2

0
1

2
G

il
si

n
g

et
al

.
(2

0
1

2
)

U
G

T
1

A
rs

6
7

1
4

4
8

6
3

6
4

3
9

4
0

.0
6

1
2

G
il

si
n

g
et

al
.

(2
0

1
2

)

rs
1

7
8

6
8

2
9

9
3

6
4

3
9

4
0

.0
5

1
2

G
il

si
n

g
et

al
.

(2
0

1
2

)

U
G

T
1

A
rs

2
0

1
1

4
0

4
3

6
4

3
9

4
0

.0
8

1
2

G
il

si
n

g
et

al
.

(2
0

1
2

)

C
Y

P
2

E
1

rs
9

1
5

9
0

8
3

6
4

3
9

4
0

.0
5

1
2

G
il

si
n

g
et

al
.

(2
0

1
2

)

U
G

T
1

A
rs

6
7

1
7

5
4

6
3

6
4

3
9

4
0

.0
4

1
2

G
il

si
n

g
et

al
.

(2
0

1
2

)

U
G

T
1

A
rs

1
2

4
6

6
9

9
7

3
6

4
3

9
4

0
.0

8
1

2
G

il
si

n
g

et
al

.
(2

0
1

2
)

A
ra

ch
id

o
n

ic
a

ci
d

p
a

th
w

a
y

P
T

G
S

2
(C

O
X

-2
)

rs
6

8
9

5
6

6
A

-1
1

9
5

G
A

A
–

A
G

9
0

0
1

,6
8

6
1

.0
2

(0
.9

8
–

1
.0

5
)

1
,

2
,

3
A

n
d

er
se

n
2

0
1

3
A

n
d

er
se

n
et

al
.

(2
0

1
3

b
)

G
G

4
7

6
1

1
.0

6
(0

.8
7

–
1

.2
9

)
0

.5
4

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
3

b
)

rs
2

0
4

1
7

G
-7

6
5

C
G

G
7

0
1

1
,2

5
6

0
.9

9
(0

.9
5

–
1

.0
3

)
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

3
b
)

G
C

–
C

C
2

3
5

4
7

8
1

.0
8

(1
.0

1
–

1
.1

5
)

0
.0

0
6

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
3

b
)

rs
5

2
7

5
T

8
4

7
3

C
T

T
4

3
0

7
2

0
1

.0
4

(0
.9

9
–

1
.0

9
)

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
3

b
)

T
C

–
C

C
5

0
1

1
,0

1
8

1
.0

1
(0

.9
6

–
1

.0
5

)
0

.2
9

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
3

b
)

T
ra

n
sp

o
rt

p
ro

te
in

s

Genes Nutr (2015) 10:448 Page 5 of 14 448

123



T
a

b
le

1
co

n
ti

n
u

ed

G
en

e
rs

-n
u

m
b

er
d

N
c
a
se

s
N

su
b
-c

o
h
o
rt

IR
R

/O
R

(9
5

%
C

I)
a

P
in

t
b

C
o

m
m

en
ts

c
F

ir
st

au
th

o
r

Y
ea

r
R

ef
er

en
ce

s

A
B

C
B

1
(M

D
R

1
)

rs
1

0
4

5
6

4
2

3
4

3
5

C
C

7
3

1
1

8
1

.0
8

(1
.0

0
–

1
.1

6
)

1
,

2
,

3
A

n
d

er
se

n
2

0
0

9
A

n
d

er
se

n
et

al
.

(2
0

0
9
)

C
T

–
T

T
2

8
6

6
4

7
1

.0
0

(0
.9

5
–

1
.0

6
)

0
.0

2
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
0

9
)

rs
3

7
8

9
2

4
3

In
tr

o
n

3
G

G
8

1
2

2
4

0
.9

5
(0

.8
9

–
1

.0
2

)
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
0

9
)

G
A

–
A

A
2

7
8

5
4

1
1

.0
3

(0
.9

8
–

1
.0

9
)

0
.0

1
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
0

9
)

A
B

C
G

2
(B

C
R

P
)

rs
2

2
3

1
1

4
2

C
4

2
1

A
C

C
2

9
6

5
9

2
1

.0
2

(0
.9

7
–

1
.0

8
)

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

0
9
)

C
A

–
A

A
6

3
1

7
3

0
.9

9
(0

.9
1

–
1

.0
8

)
0

.4
0

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

0
9
)

A
B

C
C

2
(M

R
P

2
)

rs
7

1
7

6
2

0
C

-2
4

T
C

C
2

6
0

5
0

8
1

.0
2

(0
.9

7
–

1
.0

7
)

1
,

2
,

3
A

n
d

er
se

n
2

0
1

2
A

n
d

er
se

n
et

al
.

(2
0

1
2

b
)

C
T

–
T

T
1

2
9

2
8

0
1

.0
3

(0
.9

5
–

1
.1

2
)

0
.7

2
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

2
b
)

rs
2

2
7

3
6

9
7

G
1

2
4

9
A

G
G

2
3

8
4

8
0

1
.0

5
(0

.9
9

–
1

.1
1

)
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

2
b
)

A
G

–
A

A
1

5
1

3
0

8
0

.9
8

(0
.9

1
–

1
.0

5
)

0
.1

0
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

2
b
)

rs
3

7
4

0
0

6
6

C
3

9
7

2
T

C
C

1
4

3
3

0
1

1
.0

1
(0

.9
6

–
1

.0
8

)
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

2
b
)

C
T

–
T

T
2

4
6

4
8

7
1

.0
3

(0
.9

7
–

1
.1

0
)

0
.6

9
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

2
b
)

C
yt

o
ki

n
es

IL
1

0
rs

1
8

0
0

8
7

2
C

-5
9

2
A

C
C

2
3

8
4

7
0

1
.0

2
(0

.9
7

–
1

.0
7

)
1

,
2

,
3

,
9

A
n

d
er

se
n

2
0

1
2

A
n

d
er

se
n

et
al

.
(2

0
1

2
b
)

A
C

–
A

A
1

4
0

3
0

5
1

.0
2

(0
.9

5
–

1
.1

1
)

0
.9

2
1

,
2

,
3

,
9

A
n

d
er

se
n

et
al

.
(2

0
1

2
b
)

rs
3

0
2

4
5

0
5

C
C

2
6

8
5

5
3

1
.0

2
(0

.9
6

–
1

.0
8

)
1

,
2

,
3

,
9

A
n

d
er

se
n

et
al

.
(2

0
1

2
b
)

C
T

–
T

T
1

1
0

2
2

2
1

.0
3

(0
.9

6
–

1
.1

0
)

0
.7

8
1

,
2

,
3

,
9

A
n

d
er

se
n

et
al

.
(2

0
1

2
b
)

IL
1

0
rs

1
8

0
0

8
7

2
C

-5
9

2
A

C
C

5
9

6
1

0
7

2
1

.0
2

(0
.9

8
–

1
.0

6
)

1
,

2
,

3
A

n
d

er
se

n
2

0
1

3
A

n
d

er
se

n
et

al
.

(2
0

1
3

b
)

A
C

–
A

A
3

5
3

6
7

6
1

.0
0

(0
.9

5
–

1
.0

6
)

0
.4

6
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

3
b
)

rs
3

0
2

4
5

0
5

C
C

6
4

8
1

,2
0

0
1

.0
0

(0
.9

6
–

1
.0

4
)

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
3

b
)

C
T

–
T

T
2

9
7

5
6

5
1

.0
6

(1
.0

0
–

1
.1

1
)

0
.0

4
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

3
b
)

IL
1

B
rs

4
8

4
8

3
0

6
C

-3
7

3
7

T
C

C
3

3
6

5
6

0
1

.0
1

(0
.9

6
–

1
.0

7
)

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
3

b
)

C
T

–
T

T
6

0
5

1
,1

8
6

1
.0

2
(0

.9
8

–
1

.0
6

)
0

.6
5

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
3

b
)

rs
1

1
4

3
6

2
3

G
-1

4
6

4
C

G
G

4
5

4
9

2
5

1
.0

2
(0

.9
7

–
1

.0
6

)
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

3
b
)

G
C

–
C

C
4

9
2

8
2

4
1

.0
2

(0
.9

7
–

1
.0

7
)

0
.9

4
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

3
b
)

rs
1

1
4

3
6

2
7

T
-3

1
C

T
T

3
8

9
7

7
3

1
.0

0
(0

.9
6

–
1

.0
5

)
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

3
b
)

T
C

–
C

C
5

5
7

9
8

3
1

.0
3

(0
.9

8
–

1
.0

7
)

0
.4

0
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

3
b
)

T
ra

n
sc

ri
p

ti
o

n
fa

ct
o

rs

N
F

K
B

1
rs

2
8

3
6

2
4

9
1

-
9

4
in

s/
d

el
II

1
2

2
3

0
7

0
.9

6
(0

.9
0

–
1

.0
4

)
1

,
2

,
3

A
n

d
er

se
n

2
0

1
0

A
n

d
er

se
n

et
al

.
(2

0
1

0
)

ID
–

D
D

2
6

1
4

5
6

1
.0

3
(0

.9
7

–
1

.0
8

)
0

.0
3

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
0
)

N
R

1
I2

(P
X

R
)

rs
1

5
2

3
1

2
7

A
-2

4
3

8
1

C
A

A
1

3
1

2
6

1
1

.0
4

(0
.9

7
–

1
.1

2
)

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
0
)

A
C

–
C

C
2

5
2

5
0

2
1

.0
1

(0
.9

5
–

1
.0

6
)

0
.2

0
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

0
)

rs
2

2
7

6
7

0
7

C
8

0
5

5
T

C
C

2
3

7
4

4
8

1
.0

2
(0

.9
6

–
1

.0
8

)
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

0
)

C
T

–
T

T
1

4
6

3
1

5
1

.0
1

(0
.9

5
–

1
.0

8
)

0
.7

4
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

0
)

rs
6

7
8

5
0

4
9

A
7

6
3

5
G

A
A

1
3

7
2

6
4

1
.0

1
(0

.9
5

–
1

.0
7

)
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

0
)

448 Page 6 of 14 Genes Nutr (2015) 10:448

123



T
a

b
le

1
co

n
ti

n
u

ed

G
en

e
rs

-n
u

m
b

er
d

N
c
a
se

s
N

su
b
-c

o
h
o
rt

IR
R

/O
R

(9
5

%
C

I)
a

P
in

t
b

C
o

m
m

en
ts

c
F

ir
st

au
th

o
r

Y
ea

r
R

ef
er

en
ce

s

A
G

–
G

G
2

4
6

4
9

9
1

.0
2

(0
.9

6
–

1
.0

8
)

0
.6

0
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

0
)

N
R

1
H

2
(L

X
R

)
rs

1
4

0
5

6
5

5
C

C
4

0
7

6
1

.0
1

(0
.9

3
–

1
.1

0
)

1
,

2
,

3
A

n
d

er
se

n
et

al
.

(2
0

1
0
)

C
T

–
T

T
3

4
3

6
8

7
1

.0
2

(0
.9

6
–

1
.0

7
)

0
.9

4
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

0
)

rs
2

6
9

5
1

2
1

T
T

1
1

7
2

2
7

1
.0

3
(0

.9
6

–
1

.1
1

)
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

0
)

C
T

–
C

C
2

6
6

5
3

6
1

.0
1

(0
.9

6
–

1
.0

7
)

0
.4

3
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

0
)

H
em

e
o

xy
g

en
a

se
A

n
d

er
se

n
et

al
.

(2
0

1
1

a)

H
M

O
X

1
(H

O
-1

)
rs

2
0

7
1

7
4

6
A

-4
1

3
T

A
A

1
1

8
2

6
0

1
.0

0
(0

.9
3

–
1

.0
8

)
1

,
2

,
3

A
n

d
er

se
n

2
0

1
1

A
n

d
er

se
n

et
al

.
(2

0
1

1
a,

b
)

A
T

–
T

T
2

6
5

5
0

3
1

.0
2

(0
.9

7
–

1
.0

8
)

0
.5

5
1

,
2

,
3

A
n

d
er

se
n

et
al

.
(2

0
1

1
a,

b
)

D
N

A
re

p
a

ir

M
S

H
3

rs
1

8
4

9
6

7
R

9
4

0
Q

R
R

1
2

7
8

,
1

0
B

er
n

d
t

2
0

0
7

B
er

n
d

t
et

al
.

(2
0

0
7
)

R
Q

–
Q

Q
6

5
0

.0
8

8
,

1
0

B
er

n
d

t
et

al
.

(2
0

0
7
)

M
S

H
3

rs
2

6
2

7
9

T
1

0
3

6
A

T
T

8
5

8
,

1
0

B
er

n
d

t
et

al
.

(2
0

0
7
)

T
A

–
A

A
1

0
2

0
.0

0
2

8
,

1
0

B
er

n
d

t
et

al
.

(2
0

0
7
)

M
S

H
6

rs
1

0
4

2
8

2
1

G
3

9
E

G
G

1
1

8
8

,
1

0
B

er
n

d
t

et
al

.
(2

0
0

7
)

G
E

–
E

E
5

4
0

.2
9

8
,

1
0

B
er

n
d

t
et

al
.

(2
0

0
7
)

M
L

H
1

rs
1

7
9

9
9

7
7

I2
1

9
V

II
8

4
8

,
1

0
B

er
n

d
t

et
al

.
(2

0
0

7
)

IV
–

V
V

1
0

1
0

.4
0

8
,

1
0

B
er

n
d

t
et

al
.

(2
0

0
7
)

X
P

C
R

s2
2

2
8

0
0

1
d

L
y

s9
3

9
G

ln
A

A
1

4
1

3
0

7
1

.1
7

(0
.7

1
–

1
.9

2
)

7
,

1
1

H
an

se
n

2
0

0
7

H
an

se
n

et
al

.
(2

0
0

7
)

A
C

2
0

4
3

9
2

1
.1

1
(0

.7
0

–
1

.7
5

)
7

,
1

1
H

an
se

n
et

al
.

(2
0

0
7

)

C
C

5
0

9
8

3
.7

0
(1

.7
0

–
8

.0
4

)
0

.0
1

7
,

1
1

H
an

se
n

et
al

.
(2

0
0

7
)

X
P

A
A

2
3

G
G

G
1

7
6

3
3

9
1

.3
0

(0
.7

8
–

2
.1

7
)

7
,

1
1

H
an

se
n

et
al

.
(2

0
0

7
)

A
G

1
8

7
3

5
9

1
.4

1
(0

.8
7

–
2

.2
6

)
7

,
1

1
H

an
se

n
et

al
.

(2
0

0
7

)

A
A

3
1

9
0

0
.7

6
(0

.3
4

–
1

.6
6

)
0

.3
7

7
,

1
1

H
an

se
n

et
al

.
(2

0
0

7
)

E
R

C
C

2
(X

P
D

)
R

s1
7

9
9

7
9

3
d

A
sp

3
1

2
A

sn
G

G
1

5
9

3
3

3
1

.2
5

(0
.6

9
–

2
.2

6
)

7
,

1
1

H
an

se
n

et
al

.
(2

0
0

7
)

A
G

1
9

1
3

5
4

1
.2

5
(0

.8
3

–
1

.8
7

)
7

,
1

1
H

an
se

n
et

al
.

(2
0

0
7

)

A
A

4
6

1
0

8
1

.2
2

(0
.6

1
–

2
.4

5
)

1
.0

0
7

,
1

1
H

an
se

n
et

al
.

(2
0

0
7

)

X
P

C
R

s2
2

2
8

0
0

1
d

L
y

s9
3

9
G

ln
A

A
1

4
1

3
0

7
0

.6
3

(0
.2

3
–

1
.6

9
)

8
,

1
1

H
an

se
n

et
al

.
(2

0
0

7
)

A
C

2
0

4
3

9
2

0
.9

4
(0

.4
1

–
2

.1
5

)
8

,
1

1
H

an
se

n
et

al
.

(2
0

0
7

)

C
C

5
0

9
8

3
.7

8
(0

.6
4

–
2

2
.2

9
)

0
.2

0
8

,
1

1
H

an
se

n
et

al
.

(2
0

0
7

)

X
P

A
A

2
3

G
G

G
1

7
6

3
3

9
0

.5
8

(0
.2

3
–

1
.4

8
)

8
,

1
1

H
an

se
n

et
al

.
(2

0
0

7
)

A
G

1
8

7
3

5
9

1
.8

7
(0

.7
3

–
4

.8
3

)
8

,
1

1
H

an
se

n
et

al
.

(2
0

0
7

)

A
A

3
1

9
0

0
.3

1
(0

.0
6

–
1

.6
4

)
0

.0
6

8
,

1
1

H
an

se
n

et
al

.
(2

0
0

7
)

Genes Nutr (2015) 10:448 Page 7 of 14 448

123



Data from (Chen et al. 1998; Tiemersma et al. 2002;

Sorensen et al. 2008; Chan et al. 2011) have been presented

in a previous review (Andersen et al. 2013a, b).

Results

Table 1 and Table S1 show results on interactions between

meat intake and polymorphisms in relation to CRC from

prospective and case–control studies, respectively.

Cooking carcinogens and mutagens

Prospective studies have evaluated the interaction between

fast and slow acetylators and meat intake in relation to the

risk of CRC (Table 1) (Chen et al. 1998; Chan et al. 2005;

Sorensen et al. 2008; Nothlings et al. 2009; Gilsing et al.

2012). Whereas one small study found interaction between

the number of servings per day and NAT2 acetylator status

(Chan et al. 2005), no association was found between the

amount of total or processed meat intake or number of

servings and NAT1 or NAT2 status in relation to the risk of

CRC in three other studies (Chen et al. 1998; Sorensen

et al. 2008; Nothlings et al. 2009).

Arachidonic acid pathway

Interaction between meat intake and the PTGS2 G-765C

(rs20417) polymorphisms was found in a prospective study

(Pint = 0.006) (Table 1) (Andersen et al. 2013a, b). Thus,

individuals carrying the G-765C C-variant allele were at

8 % increased risk of CRC per 25 g red and processed

meat per day in contrast to the homozygous wild-type

carriers whose risk of CRC was unaffected by meat intake.

Transport proteins

Interactions between meat intake and polymorphisms in

ABCB1 in relation to the risk of CRC were found in a

prospective cohort, whereas no interactions were found for

the two other transport proteins, ABCC2 and ABCG2

(Table 1) (Andersen et al. 2009, 2012a, b). Intake of meat

was associated with increased risk among the ABCB1

C3435T homozygous wild-type and intron 3 G-rs3789243-

A-variant allele carriers, whereas the risk of CRC for

carriers of the other alleles was unaffected by meat intake

(Andersen et al. 2009).

Cytokines

Interaction between meat intake and the marker polymor-

phism near IL10 rs3024505 was found in a prospective

cohort, whereas no interaction was found with theT
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functional IL10 C-592A nor with three functional IL1B

polymorphisms (Andersen et al. 2013a, b) (Table 1).

Transcription factors

No interactions were found between meat intake and the

genes NR1I2 and NR1H2 encoding PXR and LXR in

relation to CRC (Table 1) (Andersen et al. 2010). Inter-

actions were found between meat intake and NFKB1

(encoding the anti-inflammatory subunit p50/p105 of

NFjB) -94 ins/del (rs2836249) in relation to the risk of

CRC in a prospective cohort (Table 1) (Andersen et al.

2010). Carriers of the NFKB1 -94ins/del del-variant

alleles were at 3 % higher risk of CRC per 25 g meat eaten

per day compared to homozygous wild-type allele carriers

who had no risk by meat intake (Table 1).

Heme oxygenase

No interactions were found between the functional HMOX1

A-413T (rs2071746) polymorphism and meat intake in

relation to CRC (Table 1) (Andersen et al. 2011a).

DNA repair

A statistically significant interaction between the intake of

processed meat and the mismatch repair gene MSH3

T1036A (rs26279) and a suggestive interaction with

R940Q (rs184967) was found in a prospective case-only

study of approximately 185 persons (Pint = 0.002 and

0.08, respectively) (Table 1) (Berndt et al. 2007). Inter-

pretation of the results was not possible because possible

functional effects of the polymorphisms were not known

(Berndt et al. 2007).

A statistically significant interaction between the intake

of red meat and XPC Lys939Gln and a suggestive inter-

action between the intake of processed meat and XPA

A23G was found in a prospective study (Pint = 0.01 and

0.06, respectively) (Hansen et al. 2007) (Table 1). Homo-

zygous variant carriers of XPC Lys939Gln were at high

risk of CRC by the intake of red meat compared to the

homozygous wild-type carriers (reference) [IRR = 3.78

(1.70–8.04) and 1.17 (0.71–1.92] per 100 g of red meat per

day, respectively, Pint = 0.01) (Hansen et al. 2007). The

XPC Lys939Gln polymorphism was also identified in a

case–control study (Steck et al. 2014) (Table S1). They

found that homozygous wild-type carriers had an increased

risk by high meat compared to low meat intake in the same

group, whereas variant allele carriers had no increased risk

by high meat intake [OR = 1.5 (1.0–2.2) and 1.0 (0.9–1.8]

for homozygous wild-type carriers with high meat and low

meat intake, respectively, Pint = 0.05) (Steck et al. 2014)

(Table S1). Thus, in contrast to the study above, increased

risk for high well-done red meat intake was found among

homozygous wild-type carriers in the case–control study.

Discussion

In this review, we evaluated gene–environment interactions

between meat intake and genetic variation in relation to

CRC in order to identify the biological pathways under-

lying meat-related CRC carcinogenesis (Fig. 1; Table 1,

and S1). The retrieved studies were divided into prospec-

tive studies (Table 1) and case–control studies (Table S1)

according to the risk of recall bias. We assessed whether

found results were replicated in an independent cohort as

this is considered an important tool to identify gene–

environment interactions in genetic epidemiology.

The meat content of HCAs, PAHs, and NOCs has been

suggested to confer the risk of CRC in humans (Santarelli

et al. 2008; Ferguson 2010; Alexander and Cushing 2011;

Alexander et al. 2011; Erridge 2011; Zur 2012). Prolonged

high-temperature cooking of meat leads to the production

of HCAs and PAHs, especially grilling, barbecuing, and

frying (Ferguson 2010). In this review, we reported that

one small study found interaction between the number of

servings per day and NAT2 acetylator status (Chan et al.

2005), whereas no association was found between the

amount of total or processed meat intake or number of

servings and NAT1 or NAT2 status in relation to the risk of

CRC in three other studies (Chen et al. 1998; Sorensen

et al. 2008; Nothlings et al. 2009). The results of this

review are thus in accordance with a large prospective

study of 1757 CRC cases found no association between the

intake of HCA from meat and risk of CRC (Ollberding

et al. 2012). Thus, gene–environment interaction studies do

not support a strong role of HCAs in the aetiology of CRC.

PTGS2 (encoding COX-2) is induced by inflammatory

stimuli (Wang and DuBois 2010a, b). COX enzymes

catalyse the rate-limiting conversion of arachidonic acid to

prostaglandins such as the pro-inflammatory and pro-car-

cinogenic prostaglandin E2 (PGE2) (Wang and DuBois

2010a, b; Bacchi et al. 2012). In this review, we found that

individuals carrying the G-765C C-variant allele were at

high risk of CRC by the intake of meat in contrast to the

homozygous wild-type carriers (Andersen et al. 2013a, b).

The functional effect of the PTGS2 G-765C polymor-

phisms is not clear as studies have found higher as well as

lower activity associated with the variant (Papafili et al.

2002; Brosens et al. 2005; Zhang et al. 2005). In Danes, the

PTGS2 G-765C-variant allele is in tight linkage with the

PTGS2 T8473C-variant allele (Andersen et al. 2011b). The

microRNA Mir-542-3p targets PTGS2 mRNA for decay

through binding to the T8473C wild-type allele, whereas

the variant allele disrupts the binding leading to increased
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half-life of the PTGS2 mRNA (Moore et al. 2012). This

finding suggests that carriers of the variant alleles of these

polymorphisms have a genetically determined high level of

PTGS2 mRNA. On the other hand, no interaction was

found between the PTGS2 T8473C polymorphism and

meat intake in the same study (Andersen et al. 2013a, b).

Thus, the biological implication of PTGS2 on meat carci-

nogenesis is not readily interpretable.

ABCB1, ABCC2, and ABCG2 encode the ATP-binding

cassette (ABC) transport proteins ABCB1 (also called

MDR1 and P-glycoprotein), ABCC2 and ABCG2, respec-

tively. The ABC transporters have been found to transport

a wide variety of compounds over the cell membrane,

including amino acids, peptides, ions, metabolites, vita-

mins, fatty acid derivatives, steroids, organic anions,

phospholipids, drugs, and other exogenous compounds

(Quazi and Molday 2011; Coleman et al. 2013; Tarling

et al. 2013). Specifically, ABCB1 has been associated with

transport of endogenous pro-inflammatory signal substrates

such as IL and LT (Johnstone et al. 2000; Pawlik et al.

2005a, b; Mizutani et al. 2008), whereas ABCC2 was

found to transport diet- and smoke-derived carcinogens

(Dietrich et al. 2001; Jedlitschky and Keppler 2002;

Haimeur et al. 2004; Deeley and Cole 2006). In this

review, we found that carriers of ABCB1 C3435T homo-

zygous wild-type and intron 3 G-rs3789243-A-variant

allele were at high risk of CRC, whereas carriers of the

other alleles were unaffected by meat intake. The silent

ABCB1 C3435T polymorphisms have been reported to

change transport specificity and protein stability (Fung and

Gottesman 2009; Fung et al. 2014), whereas the intron 3

G-rs3789243-A-variant allele has been associated with low

ABCB1 mRNA level in the intestine, thus suggesting that

low level of ABCB1 is a risk factor for CRC when eating

meat (Andersen et al. 2013c). The release of IL-2, IL-4,

interferon gamma, and tumour necrosis factor-alpha from

activated peripheral blood mononuclear cells was found to

be significantly lower among carriers of the homozygous

T-variant allele of ABCB1 C3435T compared to the car-

riers of the wild-type allele (Johnstone et al. 2000; Pawlik

et al. 2005a, b; Mizutani et al. 2008). Thus, the results

therefore suggest that genetically determined low ABCB1

level disposes for CRC when eating meat.

Cytokines such as the pro-inflammatory IL-1B and the

anti-inflammatory IL-10 are mediators of inflammation in

the intestine (Coussens and Werb 2002). In this review, we

found interaction between meat intake and the marker

polymorphism near IL10 rs3024505. The functional effects

of rs3024505 are not known, so the interpretation of the

possible biological impact in relation to meat carcinogen-

esis was not possible. In this review, we found no inter-

action between IL1B and meat intake, suggesting that IL1B

is not involved in meat carcinogenesis in relation to CRC.

Transcription factors bind to DNA sequences, thereby

regulating the transcription process for the targeted genes.

Pregnane X receptor (PXR) and liver X receptor (LXR) are

members of the nuclear receptor superfamily that regulate

responses to xenobiotic exposure and lipid homeostasis,

respectively (di Masi et al. 2009; McEwan 2009). Nuclear

factor-kappa B (NFjB) is involved in inflammatory

response, apoptosis, and cell proliferation (Seufert et al.

2013). In this review, we found that carriers of the NFKB1

-94ins/del del-variant alleles were at high risk of CRC,

whereas homozygous wild-type allele carriers had no risk

by eating meat. The -94 del-variant was found to be

associated with low transcription of NFKB1 p50 in a

luciferase reporter system (Karban et al. 2004). Hence, the

deletion allele leads to lower levels of the p50 subunit of

NFjB. This would lead to preferential depletion of the

anti-inflammatory p50 dimer of NFjB, which, in turn, may

lead to a relative overweight of the pro-inflammatory

effects of NFjB. The results of this review therefore sug-

gest that carriers of the NFKB1 -94ins/del del-variant

allele were at high risk of CRC due to genetically deter-

mined high inflammatory response.

Heme iron has been associated with cell proliferation

in intestinal mucosa (Santarelli et al. 2008; Ferguson

2010; Alexander and Cushing 2011; Alexander et al.

2011; Erridge 2011; Zur 2012). Also, heme in red meat

has been found to stimulate the production of mutagenic

NOC (Joosen et al. 2009). Heme oxygenase-1 (encoded

by HMOX1) is the rate-limiting enzyme in the degrada-

tion of heme to carbon monoxide (CO), iron, and bili-

verdin, thereby reducing cellular oxidative stress and

inhibiting pro-inflammatory cytokines (Oates and West

2006). HMOX1 A-413T (rs2071746) polymorphism

affects heme oxygenase-1 activity (Ono et al. 2004). The

assessment of interactions between meat intake and

functional polymorphisms in HMOX1 may therefore

indicate whether heme or heme iron contributes to CRC

risk (Tappel 2007). In this review, we found no interac-

tions between the functional HMOX1 A-413T (rs2071746)

polymorphism and meat intake in relation to CRC. Thus,

the results suggest that neither heme nor heme iron is a

strong risk factor for CRC.

Meat, particularly processed meat, contains mutagens

such as NOC, HCAs, and PAHs, which may increase the

risk of CRC among persons with genetically determined

low DNA repair capacity (Santarelli et al. 2008; Ferguson

2010; Alexander and Cushing 2011; Alexander et al. 2011;

Erridge 2011; Zur 2012). Mismatch repair primarily cor-

rects single base-pair mismatches and small insertion–

deletion loops that arise during DNA replication (Berndt

et al. 2007). The nucleotide excision repair (NER) pathway

is the primary mechanism for repair of bulky DNA adducts

and thus is an important part of the cellular defence against
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a large variety of structurally unrelated DNA lesions

(Hansen et al. 2007). In this review, interactions between

MSH3 and XPC involved in DNA repair and meat in

relation to CRC were suggested in prospective studies.

Furthermore, interactions between the XPC Lys939Gln/

K939Q and red meat intake were found in two independent

cohorts (Table 1 and S1). Steck et al. found increased risk

by high well-done red meat intake among XPC Lys939Gln

homozygous wild-type carriers in a case–control study,

whereas Sorensen in a prospective study found increased

risk by red meat intake among the homozygous variant

carriers compared to the homozygous wild-type carriers

with low meat intake (reference group) (Hansen et al.

2007; Steck et al. 2014). Thus, the finding in the pro-

spective cohort was not replicated in the case–control

cohort. The different direction of the risk estimates

between the two studies may be due to varying linkage of

the XPC Lys939Gln polymorphism with functional poly-

morphisms within the same gene between the two studied

populations (Aissani 2014). The functional implication of

this polymorphism is not clear (Zhu et al. 2014). Thus,

although the functional implications of the XPC polymor-

phism are difficult to interpret, the results suggest that meat

intake leads to the formation of DNA adducts and that this

mechanism is involved in meat carcinogenesis.

Some of the findings in this review point to the same

underlying mechanisms. PTGS2, IL10, ABCB1, and

NFKB1 are all involved in the intestinal immune response,

thus suggesting the involvement of the inflammatory

response in meat-related carcinogenesis. Furthermore, the

use of functional polymorphisms enables a biological

interpretation of the interactions of ABCB1 and NFKB1

with meat. Interaction analyses indicated that meat intake

selectively increased the risk of CRC among carriers of the

NFKB1 del-variant allele associated with high pro-inflam-

matory activity and among the carriers of the ABCB1 allele

associated with functional release of pro-inflammatory

molecules from activated immune cells (Karban et al.

2004; Pawlik et al. 2005a, b). Therefore, these results

suggest that genetically determined high inflammatory

response is involved in meat colorectal carcinogenesis.

Also, the suggested interaction with MSH3 and PXC sup-

ports a role of DNA adducts in meat carcinogenesis. The

results of this review together with recent findings thereby

suggest a link between meat intake and cancer via intes-

tinal inflammation and DNA damage (Carbonero et al.

2012; Devkota et al. 2012; Jia et al. 2012). Also, negative

findings may provide important information. The present

study did not support a strong role of heme, iron, and HAC

cooking carcinogens in the aetiology of CRC.

The limitations of this review were derived from het-

erogeneity and the known large variability in meat intake

and meat cooking methods between the included studies.

The included case–control studies are hampered by recall

bias. Recall bias may severely affect the quality of the self-

reported data making the use of objective data or pro-

spectively self-reported data desirable. Large prospective

studies are needed in order to have sufficient power to

assess gene–environment interactions. Also, the meat

intake should be high and sufficiently distributed among

the participants in the studied cohort. Seven of the eleven

prospective studies were performed in the Danish ‘‘Diet,

Cancer and Health’’ cohort, and Danes have a high meat

intake compared with low-income countries. For example,

NFKB1 was associated with CRC in a Swedish cohort but

not in a Chinese (Lewander et al. 2007). The results from

the Danish study suggest that interaction between meat

intake and NFKB1 may be part of the reason why NFKB1

was associated with CRC in the Swedish cohort with a high

meat intake but not among Chinese who have a low intake

of meat. In addition, the careful selection of functional

polymorphisms or subsequent functional characterisation

of polymorphisms is of most importance if biological

interpretation is to be performed. Because the analyses

were based on biologically funded hypothesis, we used a

P value for the interaction of 0.05 as significance level.

Traditionally, carcinogens are identified using a combina-

tion of animal studies and epidemiological studies (IARC

2014). Gene–environment interactions should be regarded

a complementary approach which may prove a useful way

of identifying the combinations of environmental factors

and biological pathways in carcinogenesis. Future studies

should aim at assessing multiple functional polymorphisms

in biological pathways or networks hypothesised to affect

meat carcinogenesis using large well-characterised pro-

spective cohorts with relevant meat exposure.

All in all, we found indications from prospective studies

that meat interacts with polymorphisms in PTGS2, IL10,

ABCB1, NFKB1, XPC, and MSH3, but not IL1B, HMOX1,

ABCC2, ABCG2, NR1I2, NR1H2, NAT1, NAT2, MSH6, or

MLH1 in relation to CRC (Table 1). However, none of the

found interactions were replicated.

Conclusion

The results from this systematic review suggest that genetic

variation in the inflammatory response and DNA repair is

involved in meat-related colorectal carcinogenesis, and no

support for the involvement of heme and iron from meat or

cooking mutagens was found. However, none of the found

interactions had been replicated. Further studies of the

biological effects by meat intake in relation to CRC are

highly warranted.
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