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Nutritional systems biology of type 2 diabetes
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Abstract Type 2 diabetes (T2D) has become an

increasingly challenging health burden due to its high

morbidity, mortality, and heightened prevalence world-

wide. Although dietary and nutritional imbalances have

long been recognized as key risk factors for T2D, the

underlying mechanisms remain unclear. The advent of

nutritional systems biology, a field that aims to elucidate

the interactions between dietary nutrients and endogenous

molecular entities in disease-related tissues, offers unique

opportunities to unravel the complex mechanisms under-

lying the health-modifying capacities of nutritional mole-

cules. The recent revolutionary advances in omics

technologies have particularly empowered this incipient

field. In this review, we discuss the applications of multi-

omics approaches toward a systems-level understanding of

how dietary patterns and particular nutrients modulate the

risk of T2D. We focus on nutritional studies utilizing

transcriptomics, epigenomomics, proteomics, metabo-

lomics, and microbiomics, and integration of diverse omics

technologies. We also summarize the potential molecular

mechanisms through which nutritional imbalances con-

tribute to T2D pathogenesis based on these studies. Finally,

we discuss the remaining challenges of nutritional systems

biology and how the field can be optimized to further our

understanding of T2D and guide disease management via

nutritional interventions.
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Introduction

Type 2 diabetes (T2D), defined as hyperglycemia resulting

from compromised insulin utilization (insulin resistance,

IR) coupled with insufficient compensatory insulin pro-

duction, is the common form of diabetes mellitus. It is one

of the most pressing public health challenges we are facing

worldwide. According to the World Health Organization

(WHO; www.who.int) and the Center for Disease Control

and Prevention (CDC; www.cdc.gov), T2D is among the

top ten leading causes of death in the world and in the

USA. Recent estimates by the International Diabetes Fed-

eration (http://www.idf.org) indicate that in 2013, 382

million adults aged 20–70 years had T2D, and by the year

2030, the number is expected to reach 438 million. More

alarmingly, prediabetes is increasingly prevalent among

children, adolescents, and younger adults (Ardisson Korat

et al. 2014). The long-term consequences and comorbidi-

ties of T2D include retinopathy, nephropathy, neuropathy,

hypertension, dyslipidemia, cerebrovascular disease, car-

diovascular disease, and peripheral vascular disease (Al-

berti and Zimmet 2013; Atkins et al. 2010; Donath and

Shoelson 2011).

Epidemiological studies have shown that nearly 90 % of

T2D cases can be attributed to five major lifestyle factors:

diet, physical activity, smoking, overweight or obesity, and

alcohol consumption (Chen et al. 2012a; Hu 2011). Among

these, diet is particularly important given that T2D is a

This article is part of a Topical Collection in Genes and Nutrition on

‘‘Systems Nutrition and Health’’, guest edited by Jim Kaput, Martin

Kussmann and Marijana Radonjic.

& Xia Yang

xyang123@ucla.edu

1 Department of Integrative Biology and Physiology,

University of California, Los Angeles, Los Angeles,

CA 90095, USA

123

Genes Nutr (2015) 10:31

DOI 10.1007/s12263-015-0481-3

http://www.who.int
http://www.cdc.gov
http://www.idf.org
http://crossmark.crossref.org/dialog/?doi=10.1007/s12263-015-0481-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12263-015-0481-3&amp;domain=pdf


disease rooted in dysfunctional metabolism and utilization

of energy fuel, and given that dietary imbalance in both

quantity and quality is also an established risk factor for

overweight or obesity which is tightly linked to T2D. Both

epidemiological studies and clinical trials in T2D patients

indicate that insulin sensitivity or other glycemic traits are

strongly affected by dietary patterns. In particular, T2D is

more prevalent in populations consuming the so-called

Western or conservative diet, which is high in carbohy-

drates (from refined grains and sugar), red meat, and sat-

urated fat. On the other hand, dietary interventions

involving increased polyunsaturated fat and fiber reduce

T2D risk (Hu 2011; Kastorini and Panagiotakos 2009).

Despite the ample epidemiological and clinical evidence

supporting the diet–disease association, exactly how diet-

ary patterns alter molecular processes that are responsible

for glucose homeostasis and insulin function and ultimately

lead to T2D remains unclear. A better understanding of

these molecular events can provide fundamental clues

about T2D pathogenesis and help uncover novel thera-

peutic targets. In addition, fully understanding the molec-

ular impact of diverse types of dietary patterns and

nutrients may facilitate the development of nutritional

remedies for T2D as well as preventative strategies for

curbing prediabetes and T2D epidemic.

However, exploring the molecular-level associations

between nutrients and T2D can be difficult. First, most

dietary nutrients are complex products and consist of a

mixture of different components, making their effects far

more complicated and unpredictable than the direct effects

from single molecules. Second, as dietary nutrients provide

the most fundamental building blocks and fuels for the

body and participate in diverse physiological functions,

their broad and complex impact on and interactions with

the genome (DNA elements), epigenome (modifications of

DNA elements), proteome (protein products of coding

genes), metabolome (metabolite products of metabolic

pathways), and even the microbiome (bacteria species

interacting with host) in multiple types of cells, tissues, and

organ systems are expected. Only genome-wide approa-

ches that have the capacity to capture these multi-dimen-

sional signals can help achieve a systems-level

understanding of the molecular underpinnings of diet-in-

duced T2D.

Recently, nutritional systems biology has been intro-

duced to help address the challenges of nutritional research

outlined above (Panagiotou and Nielsen 2009). In essence,

nutritional systems biology aims to assess nutritional intake

and then measure the consequences as accurate transcrip-

tomic, epigenomic, proteomic, and metabolomic signals

(Fig. 1). These signals can be integrated into comprehen-

sive, tissue-specific network views to depict the molecular

mechanistic maps of nutritional variations. The arrival of

this concept is timely given the maturation of diverse omics

technologies over the past decade.

In this review, we summarize recent progresses in the

applications of nutritional systems biology in T2D

research. Because the majority of the existing nutritional

studies focus on a single level of omics data, we focus on

nutritranscriptomics, nutriproteomics, nutrimetabolomics,

nutriepigenomics, and nutrimicrobiomics studies that

involve genome-wide scans of transcriptome, proteome,

metabolome, epigenome, and microbiome in response to

dietary modulation, respectively. Of note, although nutri-

genetics that investigates interactions between nutrients

and genetic variation (i.e., how DNA changes determine

differential responses to nutrition) is also an important part

of nutritional systems biology, we do not cover this topic

here due to the lack of genome-wide investigations at

present and the low reproducibility of candidate gene-

based studies (Ioannidis et al. 2011). We first delineate the

intrinsic relationships between nutrients and different

levels of omics and then discuss the underlying concepts,

technologies, and example studies at each nutri-omics

level. Subsequently, we summarize endeavors in higher-

level systems analyses that harmonize multi-omics datasets

to derive more comprehensive views of interactions among

molecular elements in response to nutritional modulations.

Finally, we highlight the remaining challenges and future

directions for nutritional systems biology.

Relationships between different categories of omics

Although it may appear to be a daunting task to piece

together the molecular signatures of dietary patterns or

nutrients given the large amount of information across

multiple levels of molecular entities, the intrinsic rela-

tionships between molecular entities can facilitate data

modeling and interpretation (Fig. 1).

According to the central dogma, DNA encodes and is

transcribed into mRNA, which subsequently encodes and

translates into proteins. Accumulating evidence in the past

few decades has led to modifications to the linear model of

the central dogma. For example, the epigenome, considered

the second dimension to our genome and consisting of

multiple sequence-independent processes that regulate

gene expression, does not alter the coding information of

DNA sequences but contributes to transcriptional regula-

tion through chemical modifications to the DNA and his-

tone proteins (Rivera and Ren 2013) or through noncoding

RNAs such as microRNAs and long noncoding RNAs

(lncRNAs) (Cech and Steitz 2014). These findings chal-

lenge the belief that both necessary and sufficient infor-

mation for cellular function is contained in the gene

sequence.
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As the end products of gene regulation, proteins are the

basic functional units of cellular processes and the primary

players in structural, biochemical, and signaling functions.

For example, all transcriptional and translational processes

involved in the central dogma and epigenomic mechanisms

described above require essential protein products such as

transcription factors, DNA methyltransferases, histone

deacetylases, and DNA/RNA binding proteins. Addition-

ally, many proteins involved in metabolic reactions possess

enzymatic activities that metabolize nutrients into various

metabolites. The gut microbiome, considered as our second

genome, also produces enzymes that assist in metabolism

and influence metabolite diversity and quantity. Metabo-

lites, in turn, play important roles in gene expression reg-

ulation by contributing to modifications of the epigenome

that subsequently change the transcriptional regulatory

machinery.

Although each omics technology only provides a snap-

shot of signatures of the same molecular category (e.g.,

differentially expressed genes) for a given diet or a

Fig. 1 Nutritional factors and omics technologies used in nutritional systems biology
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particular nutrient, a comprehensive view can be obtained

using the between-category interactions. For instance,

known pair-wise relations, such as genetics to gene

expression, epigenetics to gene expression, genetics to

protein, gene expression to protein, protein to metabolite,

and metabolite to epigenome, can be examined and mod-

eled based on the biological information flow. When all

types of molecular data are gathered, it is possible to model

the data simultaneously based on both the data patterns

(e.g., correlative relations between genes) and biological

relationship (e.g., a protein is known to be responsible for

the production of a metabolite).

To date, the majority of the nutritional studies focus on a

single omics data type. Therefore, in the subsequent sec-

tions, we first summarize the separate applications of

nutritranscriptomic, nutriepigenomic, nutriproteomic,

nutrimetabolomic, and nutrimicrobiotic studies in T2D and

then review the multi-omics systems-level studies that are

currently available.

Nutritranscriptomics in T2D

Transcriptomics, that is, the simultaneous measurement of

nearly all genes expressed in a given cell, tissue, or

organism, has been the most successful technology applied

to nutritional systems biology in the recent decades

(Capozzi and Bordoni 2013). Transcriptomics covers the

step of passing information from DNA to RNA. DNA

microarrays and, more recently, high-throughput RNA

sequencing (RNA-Seq) technologies are the most com-

monly used transcriptomics tools in nutritional studies.

Microarrays are capable of measuring the expression levels

of thousands of genes simultaneously by hybridizing total

mRNAs from biological samples to predesigned gene-

specific probes. More recently, sequencing-based RNA-

Seq has become a revolutionary approach to transcriptome

profiling because it is more sensitive and has a broader

dynamic range than microarray tools (Ozsolak and Milos

2011; Wang et al. 2009). More importantly, RNA-Seq can

detect gene transcript signals from previously unannotated

genes and also allow analysis of transcripts from either the

forward or the reverse strand, offering higher discovery

potential compared to microarrays which focus on previ-

ously known genes and transcripts with prespecified

directionality. To date, the most commonly used RNA-seq

technologies such as the Illumina platform typically gen-

erate short-reads in the range of a few hundred base pairs

and impose challenges in the precise reconstruction of

transcript structures. Long-read RNA-seq technologies

such as Pacific Biosciences’ single-molecule real-time

sequencing are capable of generating reads of more than

20,000 base pairs and can facilitate de novo assembly (Eid

et al. 2009; Tilgner et al. 2014). Here we summarize key

applications of transcriptomics in nutritional studies pri-

marily in the last 4 years that are relevant to T2D research.

The findings from nutritranscriptomic studies of high-fat

diet (HFD) and high-sugar diets, which have been under

more intense investigations, are summarized in Table 1.

The transition from a ‘‘lean, healthy’’ diet low in fat and

carbohydrates to HFD has been robustly linked to many

common, complex diseases or pathological conditions and

thus has been the focus of nutritranscriptomic studies in the

context of obesity, insulin resistance (IR), and diabetes

(Wen et al. 2011). Numerous studies have investigated the

HFD-induced gene expression changes in various T2D-

related tissues including liver, adipose, muscle, islet, and

hypothalamus. Due to differences in the length of inter-

vention, the amount of fat in the diets used, the individual

tissues examined, and the animal models involved, there is

variability in the top differentially expressed genes detec-

ted between studies. However, certain consistent genes

have been observed in at least two studies, including PCK1

(phosphoenolpyruvate carboxykinase 1), COL1A1 (colla-

gen, type I, alpha 1), and PPARG. In addition to these

individual genes, multiple perturbed biological pathways

including lipid metabolism, inflammatory processes, and

cell cycle regulation have been robustly detected by mul-

tiple studies. Moreover, tissue-specific patterns have

emerged. For example, inflammatory and immune pro-

cesses are captured more frequently in the adipose tissue,

while lipid metabolism, oxidative phosphorylation, perox-

isome proliferator-activating receptor (PPAR) signaling,

and insulin signaling appear to be more affected in liver.

Regarding the potential mechanisms underlying the effect

of HFD on inflammation in adipose tissue, Sun et al. (2012)

thoroughly reviewed this topic and summarized that HFD-

induced lipid overload may initiate inflammation via its

diverse effects on inflammasomes, innate receptors,

nuclear receptors, cell death, ER stress, and gut microbiota.

Furthermore, transcriptomic response to HFD exhibits

genetic background- or strain-specific patterns. For

instance, the liver transcriptome of C57BL/6J (sensitive to

HFD-induced IR) and that of BALB/c (resistant to HFD-

induced IR) showed opposite expression patterns in genes

involved in proteasome and ubiquitin-mediated proteolysis

pathways (Waller-Evans et al. 2013a, b). A study of islet

transcriptome also revealed striking differences between

C57BL/6J (IR sensitive) and BLKS (resistant to HFD-in-

duced IR) in pathways related to cell cycle, growth, pro-

liferation, inflammation, and insulin secretion (Sims et al.

2013). These differential pathways affected by HFD

between strains with differential susceptibility to IR and

T2D are more likely to be relevant to T2D. Lastly, trans-

generational effects of HFD have been examined and the

findings from the transcriptomic studies corroborate with
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the increased susceptibility of offspring to metabolic dis-

eases. For instance, male offspring from mothers fed HFD

developed IR and their muscle tissues demonstrated dys-

regulation in cytokine signaling, starch and sucrose meta-

bolism, inflammatory response, oxidative phosphorylation,

mitochondrial matrix, and electron transport/uncoupling

(Latouche et al. 2014). In a study of paternal HFD, female

offspring were found to have perturbations in olfactory

transduction and cell cycle processes in both adipose tissue

and islet, along with additional tissue-specific processes

such as ubiquitin-mediated proteolysis and mitochondria in

adipose, and lipid metabolism, cell–cell signaling, and

nervous systems development in islet (Ng et al. 2014).

In addition to HFD, high-sugar diets such as high fruc-

tose and sucrose have been more recently recognized as a

potential risk of metabolic syndrome and diabetes

independent of energy intake (Abdelmalek et al. 2012;

Goran et al. 2013). A recent global study revealed that the

consumption of high-fructose corn syrup explains a

remarkable 20 % increase in T2D incidents [12]. Unlike

glucose from which lipid synthesis is under cellular control

through the energy-sensitive enzyme phosphofructokinase,

fructose is metabolized by fructokinase to fructose-1-

phosphate, which can bypass the enzymatic control by

phosphofructokinase and be converted into fat [8, 9]. In

addition, there is no negative feedback mechanism that

regulates the phosphorylation of fructose to prevent hepatic

ATP depletion (van den Berghe et al. 1977). Cellular ATP

depletion can cause an arrest in protein synthesis and

induce inflammatory and pro-oxidative changes (Cirillo

et al. 2009). Consistent with these findings, transcriptomics

studies (Table 1) indicate that high-fructose consumption

Table 1 Differentially expressed biological processes and key genes in response to diet imbalance

Tissue High-fat diet High-sucrose/high-fructose diet

Liver Glycolysis, Krebs cycle, b oxidation, fatty acid metabolism,

cholesterol biosynthesis, oxidative phosphorylation, insulin

signaling, glucose regulation, lipid metabolism,

adipogenesis, PPAR signaling, bile acid metabolism,

steroid hormone metabolism, proteasome, the ubiquitin-

mediated proteolysis, peroxisome, metabolism amino acids,

cytokine receptor interactions, cell differentiation, immune

response, inflammatory pathways (Chang et al. 2014; de

Fourmestraux et al. 2004; Inoue et al. 2005; Kim et al.

2004; Lee et al. 2012; Matsui et al. 2005; Miller et al. 2013;

Nojima et al. 2013a; Patsouris et al. 2006; Waller-Evans

et al. 2013a, b; Xia et al. 2014)

Sucrose: Lipid metabolism, amino acid metabolism, steroid

metabolism, transcription, cell cycle, apoptosis, signal

transduction, redox control, immune response (Nojima

et al. 2013b)

Fructose: Lipid metabolism (fatty acid metabolism,

biosynthesis of steroids, synthesis and degradation of

ketone bodies, FA elongation in mitochondria, bile acid

synthesis), cell cycle regulation (Oster et al. 2012a, b)

Adipose Inflammatory response, response to external stimulus,

immune system, lipid metabolism, fatty acid synthesis and

transport, triglyceride cycling, TCA cycle, PPAR signaling,

leukocyte activation, toll-like receptor signaling, cytokine–

cytokine receptor interaction, mitochondrial biogenesis, cell

differentiation (Ding et al. 2013; Koza et al. 2006; Lee et al.

2012; Matsui et al. 2005; Morine et al. 2013)

–

Muscle Glycolysis, Krebs cycle, b oxidation, fatty acid synthesis and

oxidation, mitochondrial oxidative phosphorylation,

mitochondrial biogenesis, Cytokine signaling, inflammatory

response, protein metabolism and modification, nucleic acid

metabolism, starch and sucrose metabolism,

phosphorylation of insulin signaling protein kinase B, cell

differentiation (de Fourmestraux et al. 2004; de Wilde et al.

2009; Latouche et al. 2014; Lee et al. 2012; Oh and Yun

2012; Sparks et al. 2005)

–

Gastrointestinal

tract

Immunity, lipid and fatty acid metabolism, signal

transduction, olfaction (Cui et al. 2009; Primeaux et al.

2013)

–

Islet/pancreas Cell cycle/growth/proliferation, inflammation/immune

response, ER stress, extracellular matrix (Barbosa-Sampaio

et al. 2013; Roat et al. 2014; Sims et al. 2013)

Sucrose: Apoptosis, cell cycle, glycolysis, Krebs cycle, and

lipid metabolism (Wolden-Kirk et al. 2014)

Hypothalamus Transcription, neuropeptide signaling, cell adhesion, glucose

homeostasis, regulation of glucose sensitivity and transport,

corticotrophin releasing hormone (Dearden and Balthasar

2014; Lee et al. 2010)

–
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promotes fatty acid biosynthesis, endoplasmic reticulum

stress and stress-related kinase, apoptotic activity, and

mitochondrial dysfunction in the liver (Chang et al. 2014).

In a study of high-sucrose diet, Nojima et al. (2013)

investigated liver transcriptome changes in a diabetes

mouse model and found alterations in many pathways such

as lipid/amino acid/steroid metabolism, cell cycle, tran-

scription, apoptosis, and immune response. Although sys-

tematic interrogation of high-sugar diets is still lacking at

present, comparison of the results with those from the HFD

studies reveals similar pathway level perturbations in lipid

metabolic pathways.

Another major macronutrient being studied in T2D is

protein, mainly in the context of protein restriction in

pregnancy which has been associated with hypertension,

endothelial dysfunction, and blood glucose levels in the

offspring (Gluckman et al. 2009; Sahajpal and Ashton

2003). Transcriptomic analysis of liver from a porcine

model has revealed that maternal protein restriction diets

alter a diverse set of pathways including cell cycle regu-

lation, Wnt signaling, fatty acid elongation, steroid

biosynthesis, glucocorticoid receptor signaling, mTOR

signaling, VEGF signaling, and the complement system

(Oster et al. 2012a, b).

Compared to macronutrients described above,

micronutrients such as vitamins and minerals are required

for growth in lower amounts and serve mainly as con-

stituents of enzymes and metalloproteins. In particular,

several micronutrients such as vitamin D and iron have

been associated with glucose metabolism, insulin signal-

ing, and b cell function, and high rates of micronutrient

deficiencies have been observed in obese and T2D popu-

lations (Kaidar-Person et al. 2008a, b). Of the micronutri-

ents examined in nutritranscriptomic studies, vitamin D is

particularly interesting. The prevalence of vitamin D defi-

ciency in obese individuals is over 80 % (Kaidar-Person

et al. 2008a), and the presence of vitamin D receptors and

the responsiveness of insulin gene expression to vitamin D

in human pancreatic b cells suggest a role of vitamin D in b
cell function and diabetes. Both animal model and human

epidemiology studies also support a tight inverse relation-

ship between vitamin D levels and b cell function or T2D

prevalence (Via 2012). A recent transcriptomic study of

islets responding to vitamin D implicated pathways

including lipid metabolism, cell cycle, cellular assembly

and organization, cellular function and maintenance, vita-

min and mineral metabolism, and molecular transport

(Wolden-Kirk et al. 2013). Moreover, under inflammatory

conditions, vitamin D was found to prevent islet apoptosis

and restored insulin secretion, accompanied by significant

modulation of islet genes involved in immune response,

chemotaxis, chemokine production, cell death, and pan-

creatic b cell function (Wolden-Kirk et al. 2014). Although

clinical trials have failed to substantiate the beneficial role

of vitamin D supplement in improving T2D (Via 2012),

these islet transcriptional signatures nevertheless support

an important role of vitamin D in T2D pathogenesis based

on the relevance of the molecular pathways to T2D.

Another micronutrient of relevance to T2D is iron,

because both iron overload and deficiency have been linked

to impaired pancreatic function and glucose homeostasis.

In a microarray analysis of rat pancreas with either iron

deficiency or iron overload, genes involved in lipid trans-

port and encoding pancreatitis-associated proteins were

found to be significantly affected in both conditions, thus

supporting their involvement in pancreatic functions and

T2D (Coffey et al. 2014). These micronutrient studies,

therefore, also point to a role of lipid metabolism/transport

as a shared mechanism through which nutrients influence

T2D.

Nutriepigenomics in T2D

A potential source of the large-scale diet-induced tran-

scriptomic alterations observed above could be epigenomic

perturbations due to the critical role of the epigenome in

gene expression regulation. Unlike genetic regulation of

gene expression via DNA sequence variations, epigenomic

regulatory mechanisms are void of DNA sequence chan-

ges. Epigenomics involves various types of modifications

or organization of the DNA, including DNA methylation,

histone modification (acetylation, methylation, phospho-

rylation, DP-ribosylation, and ubiquitination), and chro-

matin remodeling. They affect gene expression mainly by

altering the accessibility of DNA to the transcriptional

machinery. Noncoding RNAs such as microRNAs, small

interfering RNAs, and lncRNAs are also important epige-

netics regulators of gene expression through posttran-

scriptonal RNA degradation, transcriptional repression,

chromatin modification, and histone and DNA methylation

(Holoch and Moazed 2015). Importantly, the epigenome is

more dynamic and responsive to external stimuli such as

dietary changes. Several approaches have been developed

over the past few years to measure the DNA methylome,

including whole-genome bisulfite sequencing, restriction

enzyme-enriched sequencing techniques, affinity-enrich-

ment-based sequencing techniques, and DNA methylation

arrays. The sequencing-based technologies have the

capacity to simultaneously measure the methylation status

of millions of DNA loci. The advantages and disadvantages

of these technologies have been well discussed elsewhere

(Heyn and Esteller 2012; Laird 2010). For histone modi-

fications and chromatin organization, various sequencing-

based methods, such as sequencing coupled with chromatin

immunoprecipitation (ChIP-seq), formaldehyde-assisted
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isolation of regulatory elements (FAIRE-seq), and DNase-

seq have become readily available, as reviewed in detail by

others (Morozova and Marra 2008; Telese et al. 2013).

RNA sequencing technologies described for mRNA pro-

filing can be modified in the sample processing and RNA

extraction steps for noncoding RNA studies (Pritchard

et al. 2012).

The involvement of large-scale DNA methylation

changes in T2D has been supported by a recent genome-

wide screening, which identified 276 DNA loci with sig-

nificant differential methylation in diabetic islets (Volkmar

et al. 2012). Some of the differential methylation loci were

accompanied by transcriptional changes in adjacent genes

involved in b cell survival/function, cellular dysfunction,

and stress adaptation (Volkmar et al. 2012). In another

study comparing offspring from obese and diabetic mothers

to offspring from lean mice through genome-wide assay of

*16,000 CpG methylation sites in the liver tissue,

maternal obesity/T2D was found to trigger small but

widespread methylation changes (Li et al. 2013). Surpris-

ingly, the methylation changes were most concentrated at

genes related to development, rather than genes affecting

metabolism.

The detection of T2D-related DNA methylomic patterns

makes it possible to compare these patterns with those

affected by T2D-associated diets or nutritional factors to

further understand the mechanistic connections of nutrition

to T2D. The influences of dietary changes on epigenetic

phenomena such as DNA methylation and various types of

histone modifications have been extensively investigated,

as recently summarized by Choi et al. (2013). However, the

majority of nutriepigenomic studies have focused on can-

didate genes or loci rather than implementing the high-

throughput genome-wide methodologies (Levian et al.

2014). In one recent study of male mice fed either folate

poor or folate rich diets throughout their life, genome-wide

DNA methylation analysis of the sperm showed that the

two groups had differential methylation patterns at genes

associated with many chronic diseases such as cancer and

diabetes (Lambrot et al. 2013). In particular, it was found

that folate deficiency is correlated with altered sperm DNA

methylation of genes such as Aff3, Nkx2-2, and Uts2, which

have been associated with diabetes. Another recent gen-

ome-wide profiling of open chromatin in mouse liver tissue

using ChIP-seq and FAIRE-seq revealed that extensive

changes in the liver chromatin structure of mice fed a HFD

and that the differential chromatin regions varied depend-

ing on the strain of mice (Leung et al. 2014). The

restructuring of the chromosomes occurred mostly at areas

targeted by liver transcription factors and, not surprisingly,

was correlated with changes in gene expression. The fact

that epigenetic modification is most common at loci which

regulate other genes provides an explanation for why epi-

genetic changes can have widespread and indirect effects.

MicroRNAs have also been associated with T2D as well

as T2D-related traits such as adipogenesis, inflammatory

responses, and insulin secretion and sensitivity (Dangwal

et al. 2015; Romao et al. 2011; Ross and Davis 2014). In a

recent small RNA sequencing study of human pancreatic

islet and b cells, for example, miR-375 was identified as

important for insulin secretion regulation and miR-107,

miR-103, and let-7 were associated with insulin sensitivity

(van de Bunt et al. 2013). As recently reviewed in detail by

Ross and Davis (Ross and Davis 2014), many miRNAs

such as let-7 were not only associated with T2D and can-

cer, but could be modulated by an array of dietary com-

ponents such as curcumin, spinach, and polyunsaturated

fatty acids. While the majority of noncoding RNA studies

in T2D at present focus on miRNAs, lncRNAs have also

recently gained recognition for their potential roles in

pancreatic b cell function and glucose metabolism (Knoll

et al. 2015; Kornfeld and Bruning 2014). Although gen-

ome-scale epigenomic studies of nutritional modulation are

scarce at present, we envision rapid growth in this line of

research in the future.

Nutriproteomics in T2D

The functional consequences of transcriptomic and epige-

nomic changes are expected to be reflected in protein-level

alterations. Proteomics that systematically examines pro-

tein species has recently been used in studies of diabetes,

revealing an increasing number of enzymes and metabolic

pathways related to the development of IR (Chowdhury

et al. 2011; Sundsten and Ortsater 2009). Breker and

Schuldiner (2014) recently summarized the revolutionary

progresses in proteomics technologies in the past few years

and described in detail the common proteomic assays such

as one- and two-dimensional gel electrophoresis (2D-GE),

protein chip, high-performance liquid chromatography

(HPLC), and mass spectrometry (MS). These proteomics

technologies provide us with information from static to

dynamic measurements, from measuring protein abun-

dance to obtaining translation levels and measuring post-

translational effects, and from population-level

measurements to single cells (Breker and Schuldiner 2014).

These approaches make monitoring protein biomarkers for

physiological deregulation and the effects of nutrition

much easier (Sauer and Luge 2015).

Like transcriptome, proteome studies in nutrigenomics

have detected both well-studied and novel regulators and

pathways. Chowdhury et al. (2011) gave a good review on

nutrient excess and altered mitochondrial proteome and
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functions in diabetes that may contribute to neurodegen-

eration. Specifically, proteins involved in mitochondrial

complex I–V, tricarboxylic acid (TCA) cycle, heat shock,

fatty acid utilization were altered in diabetic sensory neu-

rons (Akude et al. 2011). It was proposed that nutrient

excess may trigger diminished NAD?/NADH ratio which

in turn switches off AMP kinase and/or SIRT1 (surtuin 1)

signaling cascade, leading to impaired expression or

activity of peroxisome proliferator-activated receptor

gamma coactivator-1 (PGC-1 alpha) and reduced mito-

chondrial activity in mouse neurons (Chowdhury et al.

2011). Recent studies of mouse livers reported that proteins

involved in branched-chain amino acid degradation, fatty

acid oxidation, TCA cycle, oxidative phosphorylation, and

retinol metabolism were affected by HFD (Deng et al.

2010; Guo et al. 2013; Takamura et al. 2008). Furthermore,

the association of proteins altered by fructose consumption

with diabetes was examined in hamsters using a matrix-

assisted laser desorption/ionization-based proteomics

approach (Zhang et al. 2008). They found that the differ-

entially expressed proteins were enriched in fructose cat-

abolism, fatty acid metabolism, cholesterol and triglyceride

metabolism, protein folding, and antioxidation. Agreeing

with the nutritranscriptomic findings discussed before,

these nutriproteomics studies found that high-fat and high-

fructose diets both affect proteins involved lipid metabo-

lism processes.

Proteomics altered by dietary fatty acid shifts was also

investigated recently by Kawashima et al. (2013) using

nano-HPLC–ESI–MS/MS. They compared the proteomics

between two diets with varying amounts of polyunsaturated

fatty acids—omega-3 and omega-6, and found that proteins

involved in mitochondria, metabolic processes, and

response to stimulus were perturbed in the liver tissue by

the fatty acid shifts.

Like macronutrient imbalances described above, vita-

min and mineral imbalances have also been found to exert

profound effects on the activity and functions of proteins.

This is not surprising given that micronutrients act as

substrates, cofactors, and ligands of proteins directly

responsible for catalytic or transport activities. For exam-

ple, Ahmad et al. (2013) reported that maternal vitamin

B12 deficiency induced differential levels of proteins

involved in the regulation of amino acid, lipid, and car-

bohydrate metabolism as well enzymes in the b oxidation

pathway in the liver of the offspring. The metabolic

changes were proposed to be mediated by the PPAR sig-

naling pathway.

While measuring protein abundance is helpful in cap-

turing key pathways perturbed by nutritional imbalances,

assessing protein posttranslational modifications is also

valuable because they are critical to protein function/ac-

tivity: They help shape the three-dimensional structures of

proteins, modify activities of catalytic sites, and regulate

binding partners and subcellular localization. Toward this

end, Sverdlov et al. (2015) recently utilized HPLC to detect

the oxidative posttranslational modification of mitochon-

drial complex II induced by high-fat/high-sucrose diet and

found the posttranslational modification to be responsible

for mitochondrial dysfunction. The methodological

advances in proteomics will enable more comprehensive

profiling of proteins and their modifications in nutripro-

teomics studies.

Nutrimetabolomics in T2D

Diabetes is a metabolic disorder, and it has been shown that

metabolites play important roles in IR and T2D (Ginter and

Simko 2013). The rapidly developing discipline of meta-

bolomics makes it possible to conduct high-resolution

characterization of hundreds or thousands of metabolites

from complex samples in a single measurement. Metabo-

lomics has been widely adopted in pharmacology and

toxicology to understand the effects of exogenous com-

pounds on metabolic regulation but is rapidly rising in

nutritional studies (Gibbons et al. 2015). At present, two

analytical platforms are mainly used for metabolomics

analyses: MS and nuclear magnetic resonance (NMR).

Each platform has inherent advantages and disadvantages,

such as the high reproducibility but a low sensitivity in

NMR-based techniques compared with MS-based tech-

niques (Gibbons et al. 2015; Gika et al. 2014). These

metabolomics tools allow comprehensive measurements of

key metabolites in signaling, receptor binding, transloca-

tion, and biochemical reaction pathways. In general, known

biomarkers of diabetes such as sugar metabolites (e.g., 1,5-

anhydroglucoitol), ketone bodies (e.g., 3-hydroxybutyrate),

and branched-chain amino acids could be detected by

various metabolomic approaches.

As summarized in Table 2, recent nutrimetabolomic

studies of diabetes has revealed diet-specific changes in

metabolites. For example, HFD increases lipid metabolites

(such as phosphatidylcholines and fatty acids) but decrea-

ses lipid metabolism intermediates (such as various acyl

carnitines) and the NAD?/NADH ratio, indicating

decreased b-oxidation and abnormal lipid and energy

metabolism (Kim et al. 2011). The levels of metabolites

that are related to obesity-associated diseases, such as

serotonin, pipecolic acid, uric acid, and branched-chain

amino acid valine were altered by HFD (Kim et al. 2011).

In addition, as reviewed by Lorraine Brennan et al., the

branched-chain amino acids (BCAAs) were elevated in a

variety of animal models fed with HFD (Gibbons et al.

2015). Studies of other diets or nutrients such as high

fructose, low protein, vitamin B6 and vitamin D also
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Table 2 Significant differential metabolites induced by diet imbalance in T2D-relevant tissues

Diet Imbalance Tissues Increased metabolites Decreased metabolites

High-fat diet versus Chow

(Kim et al. 2011)

Serum Serotonin

Phosphatidylcholine (PC)

Pipecolic acid

L-Carnitine

Stearoylcarnitine

Uric acid

LysoPC (17:0), (18:0), (18:3)

Valine, arginine, tyrosine, benzoic acid

Pantothenic acid

Phenylacetamide

Myristoylcarnitine

Decanoylcarnitine

Hexadecenoylcarnitine

Vaccenylcarnitine

Linoleylcarnitine

LysoPE (18:2), (20:4)

LysoPC (14:0), (15:0), (16:0), (16:1), (17:1),

(18:1), (18:2), (19:0), (20:1), (20:4), (20:5)

Liver 7-Ketodeoxycholic acid

LysoPC (20:4)

Monosaccharide

Fatty acid

Maltose-8TMS

L-Carnitine

3-Metyl-glutarylcarnitine

LysoPC (16:1)

trans-Palmitoleic acid-1TMS

Tyrosine

Glycerol-3TMS

Glucose-5TMS

NAD?/NADH

High-fructose diet versus

Chow (Lin et al. 2011)

Blood

plasma

Proline, methionine, proline, tryptophan,

glutamine, glutamic acid, phenylalanine,

leucine/isoleucine

LysoPE (20:4), (18:1)

LysoPC (20:4), (14:0), (20:5), (16:1)

a-/g-Linolenic acid (18:3)

Docosahexaenoic acid (22:6)

Eicosapentaenoic acid (20:5)

Glycocholic acid

Liver LysoPC (22:5), (20:4), (18:1), (16:1), (20:4)

Cytosine

Oleic acid (18:1)

Palmitoleic acid (16:1)

PC(18:4/20:2), (18:1/22:5), (20:2/16:0), (18:2/

16:0)

PE (22:6/16:0)

Ergothioneine

Malic acid

Eicosapentaenoic acid (20: 5)

Muscle LysoPC (22:4)

LysoPE (16:0)

Adrenic acid (22:4)

Docosapentaenoic acid (22:5)

PC(18:4/20:2), (18:1/22:5), (22:6/20:4), (22:5/

16:1), (18:4/18:1), (20:0/15:0), (22:5/P-16:0),

(24:1/15:0)

Eicosapentaenoic acid (20:5)

High- versus low-protein

diet (Rasmussen et al.

2012)

Diabetes

Urine

Creatine

Taurine

TMAO

Citric acid

Vitamin B6 deficiency

versus Chow (da Silva

et al. 2013)

Blood

plasma

Serine

Cystathionine

Dimethylglycine

Creatine

Creatinine

Vitamin D deficiency versus

Chow (Finkelstein et al.

2014)

Blood

plasma

Pyridoxate

Bilirubin

Xylose

cholate

Leukotrienes

1,2-propanediol

Azelate

Undecanedioate

Sebacate

Piperine

LysoPC, lysophosphatidylcholines; lysoPE, lysophosphatidylethanolamine; TMAO, trimethylamine-N-oxide
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revealed tissue- and nutrient-specific metabolite alterations

(Table 2).

Nutrimicrobiomics in T2D

The intestinal microbiome is a unique ecosystem and an

essential mediator of metabolism by encoding enzymatic

pathways that enable metabolism and synthesis of fatty

acids and vitamins. They also contribute to the host

immune development. In recent years, three major types of

high-throughput sequencing-based technologies have

become widely used to study whole communities of

prokaryotes in many niches (Di Bella et al. 2013). The

most commonly used one is amplicon sequencing, which

amplifies and sequences specific variable regions of highly

conserved genes (e.g., the 16S rRNA gene and the type 1

chaperonin gene cpn60) in order to determine which

organisms are in a sample and how organisms differ

between different conditions. In contrast to amplicon

sequencing, shotgun metagenome sequencing and meta-

transcriptome sequencing aim to sequence all DNA and

RNA in a sample to determine which genes are present and

which genes are transcribed to what levels, respectively.

Metagenome and metatranscriptome sequencing can detect

not only changes in the microbiome spectrum, but also

differentially expressed bacterial genes. However, there are

numerous challenges including low coverage, difficulties in

assembly, and potential ambiguous interpretation in these

whole-genome technologies, as discussed in detail by Di

Bella et al. (Di Bella et al. 2013).

Growing evidence supports that the microbiome in our

body, especially in the gut, is altered in diabetes (Hartstra

et al. 2015; Larsen et al. 2010; Qin et al. 2012). In a

landmark metagenome-wide association study of 345 T2D

patients and nondiabetic controls, Qin et al. (2012) iden-

tified *60,000 diabetes-associated microbial gene markers

using the gut microbial DNA. T2D patients were found to

have decreasing abundance of butyrate-producing bacteria

(Clostridiales sp. SS3/4, Eubacterium rectale, Faecal-

ibacterium prausnitzii, Roseburia intestinalis, and Rose-

buria inulinivorans) and increasing opportunistic

pathogens (Bacteroides caccae, Clostridium hathewayi,

Clostridium ramosum, Clostridium symbiosum, Eg-

gerthella lenta, and Escherichia coli) (Hartstra et al. 2015).

Dietary composition and caloric intake appear to strongly

and swiftly regulate microbial composition and function,

but the underlying mechanisms have remained elusive.

As summarized in Table 3, the recent applications of

microbiome sequencing approaches in nutritional studies

ranging from high-caloric diets to food additives have

significantly improved our understanding of the impact of

dietary interventions on the microbiota. For instance, Wu

et al. examined various diets in human subjects using 16S

rDNA sequencing and found that microbiota enterotypes

were strongly associated with long-term diets. In particular,

protein and animal fat appear to favor Bacteroides enter-

otype defined by Bacteroides, Alistipes, and Parabac-

teroides, and carbohydrates promote Prevotella enterotype

defined by Prevotella, Paraprevotella (phylum Bac-

teroidetes), and Catenibacterium (phylum Firmicutes) (Wu

et al. 2011). The microbiota changes can subsequently

influence nutrient acquisition, energy harvest, and diverse

metabolic pathways in the host. For instance, the micro-

biome associated with obesity has been found to be more

efficient in harvesting energy from the diet, alter host

metabolic pathways such as fatty acid metabolism and lipid

peroxidation, and activate inflammatory pathways, which

are closely associated with IR and diabetes (Hartstra et al.

2015). On the other hand, butyrate-producing bacteria may

protect individuals from T2D by inducing beneficial effects

through the diverse actions of small chain fatty acids such

as butyrate. As summarized by Hartstra et al. (2015),

butyrate may play important roles in T2D prevention by

enhancing mitochondrial activity, preventing metabolic

endotoxemia, and activating intestinal gluconeogenesis.

Butyrate likely achieves these effects through its interac-

tion with histone deacetylases to regulate gene expression

of key metabolic regulators such as PGC-1 alpha, a tran-

scription coactivator associated with increased fatty acid

oxidation and mitochondrial activity.

The strong influence of diets on gut microbiota points to

potential therapeutic avenues through modulating bacterial

metabolites, fecal transplantation, and probiotics. Indeed,

oral administration of butyrate or fecal transplantation has

been shown to improve insulin sensitivity, increase energy

expenditure, and reverse metabolic syndrome in mice

(Chassaing et al. 2015; Gao et al. 2009; Suez et al. 2014).

In a double-blind randomized controlled trial, insulin-re-

sistant males with metabolic syndrome received feces

infusion from lean donors showed significant improvement

in muscle insulin sensitivity, increased intestinal microbial

diversity, and increased butyrate-producing bacteria, such

as Roseburia in the feces and Eubacterium halii in the

small intestine (Vrieze et al. 2012).

Multi-omics integration in T2D

Through the above review of the applications of individual

omics technologies in T2D research, we have summarized

the various genes, pathways, epigenetic alterations, pro-

teins, metabolites, and gut bacteria species that are affected

by nutritional variations and potentially important for T2D

pathogenesis. However, how these different levels of

molecular signals piece together in the T2D puzzle is still
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Table 3 Microbiota changes induced by nutritional modulation

Nutritional modulation Species Microorganisms changed in abundance References

Increase Decrease

Protein, fat Human Bacteroides, Alistipes and Parabacteroides – Wu et al.

(2011)

Carbohydrate Human Prevotella, Paraprevotella (phylum Bacteroidetes) and

Catenibacterium (phylum Firmicutes)

– Wu et al.

(2011)

Animal-based diet (meat,

eggs, and cheeses)

Human Alistipes, Bilophila and Bacteroidels Roseburia, Eubacterium

rectale and Ruminococcus

bromii

David et al.

(2014)

Maternal high-fat diet Macaca

fuscata

Ruminococcus and Dialister Campylobacter spp. and

Helicobacter spp.

Ma et al.

(2014)

Parental high-fat diet Mouse The ratio of Firmicutes to Bacteroidetes – Myles et al.

(2013)

High-fat diet Mouse The ratio of Firmicutes to Bacteroidetes,

Ruminococcaceae and Rikenellaceae

Bacteroidaceae,

Clostridiales, and

Provotellaceae

Kim et al.

(2012)

High-fat diet Mouse proportions of Firmicutes, Deferribacteres, and

Proteobacteria

– Walker

et al.

(2014)

High-protein diet Rat Lactobacillus Lachnospiraceae Pioli et al.

(2013)

Potato fiber Dog Faecalibacterium – Panasevich

et al.

(2015)

Formula fed infants Human Ruminococcus Lactobacillus O’Sulliyan

et al.

(2013)

Saturated fat (from milk) Human Bilophila wadsworthia – Devkota

et al.

(2012)

Carbohydrate-rich diet Human Archaea Methanobrevibacter – Samuel and

Gordon

(2006)

Agrarian diet

(carbohydrates, fiber,

nonanimal protein)

Human Prevotella and Xylanibacter Firmicutes De Filippo

et al.

(2010)

Fiber (starches or

nonstarch

polysaccharides)

Human Proportions of Ruminococcus bromii and Eubacterium

rectale

– Albenberg

and Wu

(2014)

Milk oligosaccharides Human Bifidobacteria – Albenberg

and Wu

(2014)

Dietary emulsifiers

(carboxymethyl-

cellulose, polysobate-

80)

Mouse Mucolytic operational tazanomic units (e.g.,

Ruminococcus gnavus), Verrucomimicrobia phyla (e.g.,

Akkermansia muciniphila), proteobacteria

Bacteroidales Chassaing

et al.

(2015)

Artificial sweeteners

(saccharin, sucralose or

aspartame)

Mouse Bacteroides genus (Bacteroides vulgatus, Bacteroides

vulgatus), Orovidencia rettgeri, Parabacteroides

distasonis, Staphylococcus aureus

Clostridiales order

(Candidatus Arthromitus),

Akkermansia muciniphila

Suez et al.

(2014)

Artificial sweeteners

(saccharin, sucralose or

aspartame)

Human Enterobacteriaceae family, Deltaproteobacteria class,

Actinobacteria phylum

Suez et al.

(2014)
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unclear, primarily due to the focus of these studies on

individual omics and hence the limited availability of

systems-level data for a given diet or nutrient. In fact, even

the basic associations between DNA methylation, gene

expression, and metabolite profiles throughout the human

genome remain poorly described, and only modest corre-

lations have been observed between proteins and their

corresponding mRNAs (Olsson et al. 2014; Petersen et al.

2014). Therefore, there is an urgent need for systems and

integrative nutrigenomics to delineate the information flow

from dietary or nutritional changes to the omics alterations

observed. Integrative genomics will not only provide

comprehensive knowledge about the information flow from

DNA to gene transcript to protein to metabolite based on

the central dogma of molecular biology, but also expand

the central dogma by incorporating the microbiome (con-

sidered to be the second genome) and epigenomics (re-

sponsible for mediating environmental responses).

Toward this end, several recent studies have been car-

ried out to characterize and integrate multi-layered nutri-

omics data to better understand the systematic effects of

nutritional variations. Wu et al. (2014) quantified the

transcriptome, metabolome, and targeted proteomics of the

liver tissues from 40 mouse strains fed on a chow diet or

HFD and focused on 192 metabolic genes. The integration

of the multi-layered information allowed detection of

dozens of genetic loci, termed quantitative trait loci

(QTLs), for transcripts, proteins, and metabolites involved

in mitochondrion function and general metabolism. Inter-

estingly, many of the QTLs are diet dependent, supporting

gene by diet interactions in gene and protein regulations.

Corroborating with the previously observed modest corre-

lation between proteins and gene transcripts, genetic reg-

ulation of gene expression and that of proteins appeared to

be mostly distinct as demonstrated by unique mapping of

80 % of QTLs to either proteins or transcripts but not both.

These results support complex genetic regulation of

molecular phenotypes that does not follow a simple linear

model of one DNA locus to one gene to one protein. By

connecting the protein QTLs with diabetic phenotypes,

proteins Dhtkd1 and Ndufa4 were identified as candidates

for glucose regulation, and Nnt for insulin secretion. Fur-

ther investigation of Dhtkd1, a mitochondrial protein

involved in lysine metabolism, revealed that it may regu-

late insulin sensitivity and glucose levels through a

metabolite 2-aminoadipate (2-AA) which has an overlap-

ping QTL with Dhtkd1. This novel insight would not have

been possible without the integration of multi-layered

omics data in the same study.

Even if comprehensive omics profiling can be achieved,

the dynamic nature of dietary patterns and the subsequent

molecular changes is often missed in traditional nutri-

omics studies. In a unique study focusing on the circadian

patterns of liver transcriptome and metabolome, Eckel-

Mahan et al. (2013) identified circadian clock as one of the

central mechanisms that mediate the HFD-induced large-

scale metabolic and transcriptional reprogramming in liver.

Specifically, they found that HFD interfered with

CLOCK:BMAL1 recruitment to chromatin and induced de

novo oscillation of PPARg-target genes. As a result, HFD

feeding induced phase changes (mostly advanced peak

time) of oscillations of metabolites of nucleotide, carbo-

hydrates, and cofactors and vitamins, disrupted oscillations

of metabolites of xenobiotics, amino acids, and nicoti-

namide adenine dinucleotide (NAD?), and promoted

oscillations of lipid metabolites. At the transcriptome level,

oscillation of genes involved in endocytosis, lysosome,

proteolysis, insulin signaling, bile acid, and fatty acid

synthesis was abolished, whereas that of glycerophospho-

lipid metabolism, antigen processing and presentation,

N-glycan biosynthesis, and protein processing in ER was

induced. Coherence was observed between the metabolome

and transcriptome, especially within amino acid metabolic

pathways of cysteine, methionine, S-adenosylmethionine

(SAM), and taurine. These changes were accompanied with

de novo oscillation of genes with methyltransferase activ-

ities which may subsequently affect the epigenome.

Compared to most other omics studies, the deep mecha-

nistic insights from this study are in debt to its unique

design that incorporates dynamic information of diverse

molecular phenotypes. In support of the findings from this

study, an increasing number of omics studies indicate that

most dietary imbalances distort circadian cycle, which

leads to aberrations in metabolism and contributes to

obesity, IR, and others phenotypes consistent with diabetes

(Kalsbeek et al. 2014; Lin et al. 2015).

Increasing amount of evidence supports that dietary

responses can be dependent on the genetic background. To

move beyond examining dietary effect on a single genetic

background at a time and march into systematic interro-

gation of gene by diet interaction, the Lusis group has

developed a rich systems genetic resource—the Hybrid

Mouse Diversity Panel (HMDP)—that involves more than

one hundred inbred or recombinant inbred strains of mice

fed on either a chow or a high-fat, high-sucrose diet

(Bennett et al. 2010; Ghazalpour et al. 2012). Using

HMDP, Parks et al. (2013, 2015) integrated genetics,

microbiome, gene expression from adipose tissue, and

dietary information to study obesity in one study and

leveraged genetics, gene expression, metabolites, gender,

and diet information to unravel novel biology of IR in

another. These studies revealed novel genetic loci, genes,

metabolites, and microbiome species important for T2D-

related traits. In the obesity study, strong genetic control of

body fat set-point as well as microbiome plasticity was

unraveled, and multiple genetic loci were identified for
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obesity traits and dietary responses (e.g., Sptlc3, Klf14,

Degs1, Npc, Cbr1, and amylases) (Parks et al. 2013). In the

IR study, they identified gender-specific genetic loci con-

trolling IR variation as well as genetic loci for plasma

metabolites and gene expression in the liver and adipose

tissues. A total of 15 genetic loci were detected for IR, and

a novel gene, Agpat5, was experimentally validated (Parks

et al. 2015). These powerful systems genetics studies not

only provide valuable data sources and biological insights

but offer opportunities for development of novel approa-

ches to integrate the multi-layered omics datasets.

Conclusions

Our review of nutritional systems biology studies in T2D

testifies to the power of omics technologies in discovering

novel biomarkers that can be used to diagnose, predict, and

monitor the progress of diabetes as well as in unraveling

important mechanistic insights for developing preventative

and therapeutic strategies. The omics studies summarized

here have revealed a remarkably broad impact of dietary

imbalance on the molecular systems and a highly complex

regulatory network that connect the nutritional perturba-

tions to T2D. As exemplified in Fig. 2 based on findings

from HFD studies, the available evidence supports that

deleterious shifts in dietary components lead to major

metabolomics changes and promote gut microbiomic dys-

biosis, which can further exacerbate metabolomic dysreg-

ulation. Alterations in key metabolites, some of which are

capable of modifying methyl donors or key histone modi-

fication enzymes, can modify the epigenome and perturb

circadian rhythm to promote reprogramming of the tran-

scriptome and proteome. These reprograming events

eventually lead to disruptions in the diversity, quantity, as

well as oscillation patterns of genes and proteins involved

in key metabolic pathways and immune and inflammatory

processes that are important for T2D development.

Remaining challenges and future directions

Compared to other scientific disciplines such as molecular

genetics that have experienced evolutionary advances in

the past few decades, studies of how food and nutrition

interact with our internal body systems to affect health and

disease are still in its infancy and our journey remains long

due to multiple challenges. First, a comprehensive list of

dietary and nutritional components that are relevant to T2D

is not yet available. To date, most T2D studies focus on

macronutrients, such as high fat, high carbohydrate (in

particular dietary sugars) and low protein, and micronu-

trients such as Vitamin D, magnesium, and iron. Further

exploration and refinement of the dietary components

posing risk to T2D are warranted. For instance, a recent

study of 2422 normoglycemic individuals of which 201

developed diabetes identified five branched-chain and

aromatic amino acids, including isoleucine, leucine, valine,

tyrosine, and phenylalanine, to be significantly associated

with incident diabetes (Wang et al. 2011). Comprehensive

amino acid profiling will also provide molecular insights

into T2D pathogenesis.

Second, the remarkable complexity in dietary compo-

sition, tissue-specific responses, and the dynamic nature of

dietary response makes it difficult to collect all relevant

information by any single research group. Specifically, it is

likely that not only the absolute quantities of macronutri-

ents and micronutrients matter, but the ratios between

nutrients are also critical (Asif 2014). The complexity of

diets makes it arduous to test all possible combinations of

nutrients with varying composition and may contribute to

inconsistencies across nutritional studies due to the vari-

ability of diet composition. Moreover, the tissue and cell

type-specific effects of nutrition demand comprehensive

profiling of all disease-relevant tissues, which remains cost

prohibitive. Furthermore, unlike genetics which is rela-

tively static, dietary intake is a dynamic process and bio-

logical responses to nutritional imbalance are also diverse

and dynamic, which requires close examination of multiple

time points and long-term follow-up. The challenges call

for coordinated efforts in the nutritional scientific com-

munity to join force and systematically characterize diets

and nutrition in much a similar way as the consortium-

based genetic studies that have been highly successful in

the past few years.

Third, certain omics areas still face technological chal-

lenges. For example, short-read RNA-seq has become the

de facto standard in transcriptome analysis, but poses

challenge for precise reconstruction of transcript structures

due to the complexity of higher-eukaryotic transcriptomes

(Tilgner et al. 2014). Future applications of long-read

sequencing in nutrition studies will facilitate transcriptome

reconstruction and functional annotations. As discussed

above, novel technologies for systematic analysis of pro-

teomics have emerged, yet the application of these

advanced tools in nutriproteomics is still in its infancy.

Recently, Akhilesh Pandey et al. applied high-resolution

Fourier transform mass spectrometry to draw a draft map

of the human proteome, capturing *17,000 proteins rep-

resenting 84 % of the total annotated protein-coding genes

in humans (Kim et al. 2014), which we believe will be

valuable in evaluating the alterations of proteomic profiles

under diverse nutrient conditions. In addition, the

nutriproteome also requires studying protein dynamics at

single-cell resolution, because it has become clear that

populations of cells, even genetically identical ones, show
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high variability in response to nutrition perturbations

(Sauer and Luge 2015).

Lastly, although our ability to generate multi-layer

molecular data has significantly improved over the past few

decades, we are facing an ever-increasing challenge in

efficient and accurate data integration. Recently, various

network modeling approaches have been developed and

utilized to alleviate this pressing concern (Bordbar and

Palsson 2012; de Graaf et al. 2009; Levian et al. 2014; Mc

Auley et al. 2012; Meng et al. 2013; Zhao and Huang

2011). However, their efficiency in integrating the

exploding data sources and their ability to accurately model

dynamic systems remain limited. More advanced method-

ologies are urgently needed.

All these challenges demand coordinated efforts and

broad collaborations across disciplines in order to achieve

systematic characterization and understanding of the role

of diverse types of food and nutrition, the most funda-

mental elements of living beings, in maintaining or com-

promising health. Such systems-level comprehensive

understanding will have the potential to transform medi-

cine from traditional symptom-oriented diagnosis and

treatment of diseases toward disease prevention and early

diagnostics. An example moving into this direction is the

integrated Personal Omic Profiling (iPOP) system devel-

oped by the Snyder group at Stanford (Chen et al. 2012b).

By tracing the dynamic personal genome, it is possible to

observe molecular changes accompanying external varia-

tions such as lifestyle and dietary modification, and use the

molecular information to predict health consequences.

Such systems will better assist in health care in many ways

such as early and accurate diagnosis and disease

Fig. 2 Potential mechanisms underlying high-fat-diet-induced dia-

betes based on recent nutritional systems biology studies. High-fat

diet can affect metabolites (left branch), microbiota (middle), and

NAD?/NADH ratio (right). Left branch: The perturbed metabolites

may affect methyl donors such as cysteine, methionine, SAM, and

SAH, leading to changes in DNA methylation. Altered DNA

methylation regulates gene expression through multiple mechanisms,

such as promoter and gene body methylation. Middle branch:

Butyrate-producing bacteria have been found to be decreased in gut

microbiota, leading to lower levels of short-chain fatty acids (SCFAs)

such as butyrate, which could modulate histone deacetylase (HDAC)

activities to induce histone modifications and chromatin structural

changes. Epigenomic changes may directly alter transcriptional

activities or indirectly by reshaping the circadian rhythm including

impaired CLOCK/BMAL1 recruitment to chromatin and induction of

PPAR-c recruitment. Right branch: Decreased NAD?/NADH ratio by

HFD can switch off AMPK and SIRT1 signaling, leading to

downregulation of PGC-1 and subsequent mitochondria dysfunction.

The upstream regulatory mechanisms depicted from all three

branches will trigger in perturbations of various biological processes

such as lipid metabolism, Krebs cycle, fatty acid synthesis, oxidative

phosphorylation, cell cycle, and inflammatory responses that lead to

insulin resistance and compromised b cell functions that are primary

features of T2D
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prevention. Studies that have investigated gene–lifestyle

interactions in T2D have suggested that the biological

effects of genetic predisposition may be partially or nearly

completely abolished by a healthy lifestyle or lifestyle

modifications (Temelkova-Kurktschiev and Stefanov

2012). With the help of nutritional systems biology, we

will be able to obtain comprehensive molecular signature

maps of dietary components posing T2D risks. When such

maps are coupled with a personalized iPOP system, it is

possible to pinpoint nutritional factors that can reverse or

normalize the risk molecular profiles specific to a particular

individual to achieve truly personalized health care. A

recent study demonstrating that dietary Jerusalem artichoke

(Helianthus tuberosus) reversed both the gene expression

pattern and T2D-related phenotypes induced by high

fructose (Chang et al. 2014) supports this concept and

marks an inch toward the reality of diet-based treatment of

T2D. Although directly relevant, human studies face dif-

ficulties in accessing internal tissues, which limit their

ability to obtain systems-level biological insights. Animal

models studies, on the other hand, can facilitate mecha-

nistic insights but are limited by their direct translational

potential. Therefore, coupling animal model studies and

human investigations like the iPOP system in nutritional

systems biology is necessary to enable not only rapid dis-

covery but also timely translation into humans.
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