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Abstract

Biomarkers are an efficient means to examine intakes or exposures and their biological effects and to assess system
susceptibility. Aided by novel profiling technologies, the biomarker research field is undergoing rapid development
and new putative biomarkers are continuously emerging in the scientific literature. However, the existing concepts
for classification of biomarkers in the dietary and health area may be ambiguous, leading to uncertainty about their
application. In order to better understand the potential of biomarkers and to communicate their use and application,
it is imperative to have a solid scheme for biomarker classification that will provide a well-defined ontology for the
field. In this manuscript, we provide an improved scheme for biomarker classification based on their intended use
rather than the technology or outcomes (six subclasses are suggested: food compound intake biomarkers (FCIBs),
food or food component intake biomarkers (FIBs), dietary pattern biomarkers (DPBs), food compound status biomarkers
(FCSBs), effect biomarkers, physiological or health state biomarkers). The application of this scheme is described in
detail for the dietary and health area and is compared with previous biomarker classification for this field of research.
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Background
Biomarkers in general are objective measures used to
characterise the current condition of a biological system.
Many definitions exist, usually aimed at specific branch of
science, e.g. medical therapeutics or nutrition. For in-
stance, a working group under the US National Institutes
of Health defined biomarkers as ‘a characteristic that is
objectively measured and evaluated as an indicator of nor-
mal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention’.
On the other hand, authors in the nutrition field have
classified biomarkers as ‘a biochemical indicator of dietary
intake/nutritional status (recent or long term), or an index
of nutrient metabolism, or a marker of the biological con-
sequences of dietary intake’ [1, 2]. A consensus statement
from a Hohenheim conference on biomarker definitions
in nutrition resulted in a definition of biomarkers as ‘test
results related to exposure, susceptibility or biological
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effect’ [3]. An important characteristic of any biological
system is that it is dynamic, involving life processes such
as nutrient input, waste excretion, growth, movement,
energy throughput, reproduction, annual cycles, aging,
etc. The dynamic nature of biological systems is also the
reason why objective characterization of the state of a bio-
logical system is needed. This is also a prerequisite for un-
derstanding how the system may respond, but also a
useful tool to decide on the need for intervention if the
system is moving into an undesired state such as disease.
Due to the large number of biomarker applications as

well as the diversity of biomarker characteristics, there
have been a number of published nutritionally relevant
biomarker classification schemes (Table 1) [3–8], each
using one specific characteristic of the biomarker as a
criterion. However, none of them creates a truly univer-
sal classification without considerable ambiguity. This is
because the same biomarker measurement, i.e. of a nu-
trient level, metabolite flux or other biological activity,
may unintentionally end up in several classes, depending
on their use in different studies.
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Table 1 Published biomarker classification schemes

Criterion Classification Definition Examples References

Sample type Biomarker

Temporal relationship
with dietary intake

Short-term biomarkers Biomarkers that respond to
dietary intake within hours

Breath Hydrogen (lactose intolerance) [4]

Plasma 13C–glucose (lactose intolerance)

Serum Vitamin C (postprandial spikes)

Serum Triglycerides (postprandial spikes)

Medium-term biomarkers Biomarkers that respond to
dietary intake over weeks
or months

Red blood cell Essential fatty acid (average of the
previous 120 days of intake of
essential fatty acids)
Folate (average of the previous
120 days of intake of folate)

Long-term biomarkers Biomarkers that respond to
dietary intake over several
months or years

Hair Toenail Trace element (long-term intake of
a trace element, e.g. Se)

Relevant functional
outcomes

Markers of exposure to a
food compound

Markers that are related to
the exposure to the food
compound being studied,
such as a serum, fecal,
breath, urine or tissue
marker

Red blood cell
Blood

Folate (exposure to folate in food)
Tryptophan (exposure to tryptophan
in food)

[5]

Markers of target function/
biological response

Markers that are related to
the target function or
biological response such as
changes in body fluids, levels
of a metabolite, protein or
enzyme or changes in a
given function

Plasma

Physical

Reduction of homocysteine
(response to dietary folate)
Blood pressure (response to dietary
caffeine)

Markers of intermediate
endpoint

Markers that are related to
an appropriate intermediate
endpoint of an improved
state of health and well-
being or reduction of risk of
disease, or both, such as the
measurement of biological
processes that relate directly
to the endpoint

Physical

Bone

Extent of narrowing of the carotid
artery (cardiovascular disease)
Mineral density (risk of bone fracture)

Association with intake Recovery biomarkers Biomarkers based on recovery
of certain food compounds
directly related to intake and
not subject to substantial
inter-individual differences

Urine

Urine
Urine

Doubly labeled water (metabolic
rate and total energy expenditure)
Nitrogen (protein intake)
Potassium and sodium

[6, 8]

Predictive biomarkers Biomarkers that are sensitive,
time dependent and show a
dose-response relationship
with intake levels but their
overall recovery is lower
than recovery biomarkers

Urine 24-h sucrose and fructose (sugar
intake)

Concentration biomarkers Biomarkers whose
concentrations do correlate
with intakes of corresponding
foods or nutrients but the
strength of the correlation is
often lower (< 0.6) than that
expected for recovery
biomarkers (> 0.8)

Serum
Blood

Vitamins (vitamin intake)
Lipids (lipid intake)

Replacement biomarkers Biomarkers that are closely
related to concentration
biomarkers and refer
specifically to compounds
for which information in

Urine

Serum Urine

Aflatoxin
Isoflavonoids and lignans
(phytoestrogen intake)
Phytoestrogens (phytoestrogen
intake)
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Table 1 Published biomarker classification schemes (Continued)

Criterion Classification Definition Examples References

Sample type Biomarker

food composition databases
is unsatisfactory or unavailable

Biological endpoint Biomarker of exposure Accurately reflecting intake/
exposure

Any biological
specimen

Plasma vitamin C [3]

Biomarker of
susceptibility

Accurately reflecting (an
aspect of) susceptibility

Any biological
specimen

Low plasma vitamin C (risk of
scurvy); high serum cholesterol or
blood pressure (susceptibility to
myocardial infarction); low bone
mineral density (susceptibility to
fractures)

Biomarkers of effect and
efficacy

An established biomarker of
efficacy is an indicator of an
improvement of a physiologic
function or a decrease in risk
factors for a disease (it follows
that effect biomarkers would
also include the corresponding
null or negative outcomes)

Any biological
specimen

Changes in: serum cholesterol;
blood pressure; bone formation,
resorption or density; prostate
specific antigen

Purpose of the study Biomarkers of dietary
exposure

Biomarkers that are aimed at
assessing dietary intake of
different foods, nutrients,
non-nutritive compounds or
dietary patterns (recovery
biomarkers, concentration
biomarkers, recovery
biomarkers and predictive
biomarkers)

Urine Nitrogen (protein intake) [7]

Biomarkers of nutritional
status

Biomarkers that reflect not
only intake but also
metabolism of the nutrient(s)
and possibly effects from
disease processes

Plasma Homocysteine (folate deficiency,
one-carbon metabolic processes)

Biomarkers of health/
disease

Biomarkers related to
different intermediate
phenotypes of a disease or
even to the severity of the
disease

Plasma

Plasma

Total cholesterol (cardiovascular
diseases)
Triglycerides (cardiovascular
diseases)
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To reach a classification scheme for biomarkers with
less ambiguity, it is necessary to understand the basic
conditions affecting any potential biomarker in a bio-
logical system. Any organism can be recognised as a sys-
tem that is constantly exposed to stimuli from both
external and internal environments. These systems are
therefore constantly influenced by a variety of factors
and these exposures result in biological responses, de-
pending on system susceptibility (Fig. 1).
Biological systems are dynamic and biomarker iden-

tification or biomarker measurements are therefore
complicated by the intrinsic system’s response, which
is aimed at reverting the system to the pre-challenge
state (i.e. the host system response). If the system is
unable to adjust, permanent changes may ensue,
sometimes in an unpredictable way that may cause
injury or disease [9]. The parameters that can be uti-
lised to monitor and evaluate system states or
changes are recognised as biomarkers.
For human beings, as with most biological entities, there
are three important interactions to consider between the
individual and its environment: exposure, individual sus-
ceptibility and effect (Fig. 2). Exposures include physical,
chemical, biochemical, biological, physiological, cognitive,
psychological and social factors [10, 11]. They include ex-
ternal and visible factors such as foods, medicine and
smoking, as well as less tangible factors like physical or
psychological stress and societal inputs.
Susceptibility may be seen as an antonym to resilience

affecting the ability to re-balance following a response to
any of these exposures (Fig. 3). Individuals have static as
well as variable elements as part of their intrinsic suscepti-
bility or resilience. These are often termed as host factors.
The more static part of a biological system refers to

the susceptibility that people are born with or grow up
with, such as their genes, epigenetically encoded gesta-
tional factors, and often part of their cultural and social
background. Other parts of the epigenome, culture,



a

b

Fig. 1 Interactions between the environment and a biological system. The system can be any organism or group of inter-dependent organisms
and the environmental exposure can be any changes of the environment. The image in a applies to the static part of susceptibility and in
b applies to the variable part of susceptibility. (a) Basic relationship between exposures, effects in a biological system and the susceptibility factors
characteristic of the system. Susceptibility is basically an effect modifier for how the exposure(s) affect the biological response. (b) The effect
imposed upon the biological system may eventually change the system characteristics thereby changing its susceptibility. (c) The exposure of the
system may also be directly affected by the system susceptibility factors themselves, e.g. if exposure is avoided or exacerbated (e.g. if the sensation of
hunger is increased so food intake increases beyond needs)
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social factors and also the microbiota may be classified
as semi-static since they may be changed to some extent
[12, 13]. The variable part of a biological system refers
to the consequence of exposures and cumulative effects,
such as nutrition, fitness, immunity to infection, know-
ledge and mental balance. All of these are factors devel-
oped throughout life that can be changed gradually
caused by impact or change of the environmental vari-
ables. Clearly, these static or variable factors also mutu-
ally interact to enhance or diminish their impact on the
system. This fact underlines the point that susceptibility
factors may not only act as modulators of exposures or
effects but they also act mutually on each other. This
further complicates the measurement of susceptibility.
Based on these interacting processes, any exposure

may or may not lead to a series of changes in the system
(e.g. in physical endurance, metabolism and intellectual
capacity) which could lead to either a faster or slower
aging processes or imbalances leading towards disease.
All of these processes result in a complex, highly
dynamic system, which is never in total balance.
Biomarkers could, in theory, capture the state of all the
on-going processes and changing balances, thereby
giving a full characterization of the current state of the
system, including health dynamics and disease risks. This
should be seen in contrast to the current international
consensus definition of health, which is more static. Under
these consensus views, health is typically defined as a
‘state’ rather than a dynamic balance in all aspects of life
[14]. Recent suggestions for a new ‘health’ definition
support a more dynamic and operational assessment. In
particular, health is now defined as an ability to cope with
challenges in various dimensions of life [15]. Concepts re-
lating to the measurement of health, i.e. biomarkers,
should therefore also follow similar dynamics.

Objectives of this review
There is widespread recognition that qualitative as well
as quantitative changes in food intake can strongly affect
the risk of diet-related disease. However, it is must also
be acknowledged that (1) our current instruments for
dietary assessment generate imprecise or even inaccurate
estimates of intakes [16–18], (2) the short-term as well
as the longer-term processes by which food components
affect health are not fully understood [19, 20] and (3) in-
dividual static and dynamic susceptibility factors are not
well described [21–23]. Therefore, it is necessary to
develop robust and well-validated biomarkers to support
the assessment of food intake and their effects at an in-
dividual level. The objective of this review is to provide
an improved scheme for the classification and applica-
tion of dietary and health biomarkers and to discuss the
implications of this scheme’s use compared with previ-
ous schemes.

Biomarkers for the dietary and health area
When it comes to dietary and health biomarkers, envir-
onmental exposure variables are often limited to the
diet, i.e. the nutrients and all the non-nutritive compo-
nents in foods. Non-nutritive components in this
context may be largely inert or may, in analogy with
established nutrients, affect health in a beneficial or ad-
verse manner. Dietary and health biomarkers are focused
on the measurement of these exposures and on



Fig. 2 Diversity of interaction between the biological system with intrinsic system variables and the surrounding environmental variables. Both
exposures (environmental variables) and their corresponding host susceptibility factors (intrinsic variables) are diverse in nature and the steady
state level of effect biomarkers (measured as changes in system variables) in a balanced health situation reflects environmental stress that does
not overtly challenge the system susceptibility
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quantifying the consequent biochemical, physiological,
cognitive and biological changes affecting the exposed
subjects. Many dietary intake biomarkers, at their
current state of development, may be viewed mainly as
validation tools for dietary assessment instruments (e.g.
24-h recalls, food diaries or food frequency question-
naires (FFQs) [24, 25]). In this sense, they may help to
confirm the ‘nutritype’ of an individual, i.e. dividing a
population into groups of common (typical) intake pat-
terns. However, with the development of metabolomics,
it is now possible to identify more food intake bio-
markers and to provide a deeper understanding of meta-
bolic dynamics. Dietary and health biomarkers may
become central tools to get a better understanding of
the association between diet, lifestyle or other environ-
mental variables with individual disease risk [6]. In this
case, dietary and health biomarkers may be defined as
objective measures or indicators of food intake, the ef-
fects of dietary intake on the body and the consequent
nutrition-related state of an individual or a group of in-
dividuals. Based on this definition, the dietary assess-
ment instruments as such are not considered as
biomarkers since they are not objective biological mea-
sures. However, these instruments are still the current
best practice to assess dietary intake and are therefore
used to support the discovery of potential dietary and
health biomarkers. In analogy with biomarkers for clin-
ical application, dietary and health biomarkers should be
measured in suitable sample types which could capture
the exposures or effects, and the kinetics of them should
be well established for application and interpretation.
Therefore, it is a prerequisite that the biomarkers meet a
sufficient level of validation so that both analytical and
biological aspects of the biomarker measurement
methods are validated [26].

Classification of dietary and health biomarkers
In general, dietary and health biomarkers can be subdi-
vided into three major classes. These include exposure/
intake, effect, or susceptibility/host factors (Figs. 1 and 2),
as previously suggested by others [3].

a) Exposure and intake biomarkers reflect the level of
extrinsic variables that humans are exposed to, such
as diets and food compounds, including nutrients
and non-nutrients. They can usually be described in
terms of rates of intake and concentrations in biofluids
or tissues over a defined timeframe, e.g. for the single
compounds, their kinetic parameters such as half-
lives, total body burden or stores [4, 6].



a1 b1 c1

a2 b2 c2

Fig. 3 Balance and stress in a biological system. Any biological system including human individuals may experience periods of balance (a1, b1 and
c1) and periods of increased stress (a2, b2 and c2). Systems with different susceptibility have different risk of developing disease when exposed to the
same stress. For a system with normal (moderate or low) susceptibility (a1), an increased stress may be tolerated (a2) making the system come closer
to disease risk but without causing disease. For a system with high general susceptibility (b1) or specific susceptibility (c1), an increased environmental
challenge may overstep the system tolerance leading to imbalance and heightened risk of disease (b2 and c2)
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b) Effect biomarkers refer to the functional response of
the human body to an exposure. They are defined in
terms of the time course of response until they reach
steady state or return to baseline levels. Effect
biomarkers often integrate several challenges to reflect
the effect of several extrinsic and intrinsic factors.
Typical examples include changes in satiation, plasma
glucose response and blood pressure [5].

c) Susceptibility or host factor biomarkers represent
the individual susceptibility or resilience to an
exposure predicting the intensity of its effect on the
individual. Susceptibility may be seen as the
‘background health status’, i.e. the sum of intrinsic
or ‘host’ factors explaining current individual health-
related risks. As already mentioned, they include
static as well as variable susceptibility factors [3].

It is readily recognised that these classes overlap, just
as with previous classifications. For instance, measure-
ments of plasma glucose could be classified in any of the
three classes, directly reflecting either a recent glucose
intake (exposure), the glucose kinetics response (effect)
or the ability to cope with a glucose challenge (suscepti-
bility). Whether the measurement of a biomarker is
classified into one class or another is, to a large extent,
based on the intended application of the measurements.
We would therefore like to define the three dietary and
health biomarker classes as ‘hyper-categories of applications’
that may be divided into several subclasses as shown
in Figs. 4 and 5 and in Table 2 below. These bio-
marker classes and subclasses share laboratory and
clinical methodologies and incorporate most of the
classes suggested in previously published classifica-
tions of dietary and health biomarkers.
Discussion—dietary and health biomarker
subclasses
The dietary and health biomarker classes proposed in
Table 2 are meant to be a mutually exclusive list in
the sense that any application of a dietary and health
biomarker should be covered by only one of the
classes. The basic concept is that the biomarker clas-
sification is determined solely by the purpose of using
the biomarker and not by the assay as such. This is
detailed below with a range of examples. Although
the classification scheme builds upon an existing
scheme, the division by study purpose rather than by
assay methodology is conceptually novel for the diet-
and-health field while it has been used more often in
the clinical area; this classification provides a more
strict language for the dietary and health biomarker
area. Each biomarker class may be further subdivided
as explained below and shown in Fig. 4.
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1) Food compound intake biomarkers (FCIBs): The
compounds in food may be nutrients or other
chemical entities, i.e. non-nutrients. Nutrient intake
biomarkers (NIBs) represent specific nutrient intakes
within a well-defined timeframe as previously de-
tailed by Potischman [4]. For instance, urinary potas-
sium could be used to assess the dietary potassium
intake over a collection period of around 24 h [25].
Biomarkers of long-term exposures may also be
NIBs, for instance toenail selenium serves the pur-
pose of representing the long-term (0.5–1 year) in-
take of selenium [27–29]. NIBs for long-term intakes
should not be confused with the use of the same
measurements to provide a status of current nutrient
adequacy (i.e. as NSBs, see subclass 4 below). The
NIBs typically fluctuate around an average reflecting
the median intake over a period defined by their
kinetics.

A
n
b
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Fig. 4
and ef
its inte
nother FCIB subcategory would be the non-
utrient intake biomarkers, NoNIBs. NoNIBs may
e further subdivided by exposure timeframe in
alogy with the NIBs or according to their
ticipated impact. For instance, biomarkers of
axanthin or resveratrol intake can be used to
present putatively beneficial non-nutrients, and
Classification of dietary and health biomarkers within the space shaped by the
fect. See text for further discussion of the proposed subclasses of biomarkers. Th
nded use
iomarkers of lead, solanine or organophosphorous
esticide intake can serve as indicators of specific
xicants present in the diet. An ideal NoNIB has a
ro value when the compound has not been present
the food or diet and increases significantly after
take with well-characterised kinetics. Many polar
lant ‘secondary’ metabolites such as phenolics, sim-
le terpenes and others follow this pattern [30].
gain, the NoNIB class should not be confused with
oNSB (subclass 4 below) where measurements of
e same compounds are used to evaluate whether a
fety limit is reached.
sa

2) Food or food component intake biomarkers (FIBs):
FIBs measure the intake of specific food groups,
foods or food components (such as ingredients) and
can be used to estimate recent or average intakes of
these entities. They could provide objective
assessment of dietary intake in nutrition research;
therefore, they might be a promising tool to qualify
or even substitute dietary assessment instruments.
The timeframe represented by a FIB depends on the
kinetics of the metabolite measured.
The FIB could be a single compound biomarker

(typically a NoNIB) or a combined biomarker. For
instance, proline betaine excretion could be used as a
three hyper-categories of biomarkers, exposure, susceptibility
e interpretation of the measurement of a biomarker depends on



Fig. 5 Proposed terms for initiating ontology for dietary and health biomarker
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biomarker of recent orange juice intake [31] or citrus
fruit consumption [32, 33] and ethyl glucuronide in
blood or urine could serve as a biomarker of alcoholic
beverage consumption within the last 48 h [34–36].
More specific combined biomarkers have also been
proposed. For instance, tartrate together with ethyl
glucuronide could serve as a biomarker of red wine
consumption [37]; four different beer constituents
have been proposed as a multi-component biomarker
of beer intake [38]; and ratios of specific alkylresorci-
nols have been suggested as biomarkers of wheat or
rye fibers [39–41]. As seen from these examples, the
addition of two or more FCIBs to form a combined
FIB may be done in several ways (Table 3). Specifically,
this may be done by including one of two or more
FCIBs, by summing up signals from one or more simi-
lar metabolites, by calculating ratios of two FCIBs or
by presenting a pattern of several FCIBs along with a
rule for how much of this pattern should be covered.
Whole food groups may be represented by several FIBs
such as a combination of several flavonoids for fruit
and vegetables [42] or by a single common characteris-
tic compound as exemplified by proline betaine (citrus
fruit) or ethyl glucuronide (alcoholic beverages).
FIBs will be the subject of a series of reviews to be

published in this current journal issue. Again, the
ideal food intake biomarker is zero when the food is
not ingested throughout a ‘wash-out’ period but is
measurable showing distinct dose- and time-
dependent responses after intake [30]. Those re-
sponses should, as far as possible, be independent of
individual host factors, e.g. differences in metabolic
or transport rates or in gut microbial functionality;
therefore, food compounds that are not metabolised
may be the most promising FIBs. Most of the FIBs
discussed here except ethyl glucuronide have not
been formally validated, and extra studies are needed
to improve the validity of them [43].

3) Dietary pattern biomarkers (DPBs): DPBs are a set
of FIBs and FCIBs that reflect the average diet of an
individual. They can be used to distinguish between
different dietary habits or to highlight the relative
adherence to a pre-defined diet such as Mediterra-
nean [44] or Nordic diets [45, 46]. Typically, these
biomarkers represent a number of ‘signal’ foods and
nutrients that are more abundant in a certain diet,
e.g. biomarkers of olive oil, citrus fruits, greens, nuts
and fish along with alpha-linoleic acid and specific
polyphenol signalling Mediterranean-type diets. The
biomarkers of such ‘signal foods’ may also be used in
combinations to produce a score-like evaluation of
the consumption of the pattern. They usually overlap
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Table 3 Examples of complex FIBs using combination of FCIBs

Food or food component Combined FIB Modes for combining FCIBs Source of
informationEither-or Sum of 2 or more Patterna Ratios of biomarkers

Beer Isoxanthohumol/8-prenylnaringenin X X [85]

Soy Equol/O-desmethylangolensin X X [86]

Beer N-methyl tyramine sulfate, the sum
of iso-α-acids and tricyclohumols,
pyro-glutamyl proline, 2-ethyl malate

X (3/4) [38]

Red wine Tartrate, ethyl glucuronide X (2/2) [37]

Sugar-sweetened beverages Formate, citrulline, taurine, isocitrate X (4/4) [87]

Wheat or rye fibers Ratios of specific alkylresorcinols
(C17:0/C21:0)

X [39–41]

Fruit and vegetables Ten flavonoids X [42]

Walnut Metabolites of fatty acid metabolism
(10-hydroxy-decene-4,6-diynoic acid
sulfate; tridecadienoic/tridecynoic
acid glucuronide), ellagitannin-derived
microbial compounds (urolithin A
glucuronide; urolithin A sulfate), and
intermediate metabolites
of the tryptophan/serotonin pathway
(3-indolecarboxylic acid glucuronide)

X (5/5) [88]

Coffee Atractyligenin glucuronide,
cyclo(isoleucylprolyl),
1-methylxanthine
and trigonelline

X [89]

aSupplemented with the rule for how many FIBs in the pattern should be covered
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to some extent with the foods and nutrients used to
define the diet indexes from questionnaire data, such
as the Healthy Eating Index HEI [47], or the Mediter-
ranean diet score MDS [48]. Since most people eat a
variety of foods in each meal but never eat all signal
foods at the same time, it is the pattern rather than
the single biomarkers that reflect the dietary signature.
Intake biomarkers are often used to assess the rela-
tionship between diet and health effects. It is often dif-
ficult to evaluate an isolated effect of a single nutrient
in a complex diet since there are interactions between
nutrients and other dietary factors. The DPBs may be
useful to assess the overall adherence to diets in
longer-term studies of their health effects.

To make good use of DPBs, 24-h urine samples
and repeated sampling are preferred to eliminate the
extraneous variability caused by variables such as the
timing of sample collection and within-person vari-
ation [49, 50]. Three samples taken with several
months interval might be sufficient to reflect long-
term status [51], but the sample collection interval
might depend on various factors such as season and
the length of the study period [49]. For example, the
consumption of fruit and vegetables varies according
to seasons, which could lead to biased estimate of
the habitual intake of some nutrients such as vitamin
C [52]. In this case, sampling in every season might
be necessary to obtain a more precise estimate of
average diet.

4) Effect biomarkers are used to monitor changes in
biochemical, physiological or psychological state as a
response to nutritional exposures. These biomarkers
may be divided into (a) those only indirectly
associated with risk, i.e. most biomarkers related to a
functional physiological or metabolic response
(functional response biomarkers), and (b) those
directly related to risk, i.e. risk-effect biomarkers de-
scribing an effect on an established risk biomarker
(for risk biomarkers, see section 6b below). A func-
tional response is often taken to indicate a certain
mechanism of action while risk-related biomarkers
additionally have a recognised cause-and-effect rela-
tionship to disease.
a) Functional response biomarkers could be biomarkers
of enzyme induction, satiety, endurance, gene
expression, or an acute-phase inflammatory marker.
Some functional change biomarkers cannot readily
be interpreted. Great caution should be exercised
when biomarkers are used that have not been fully
validated for use as risk-related biomarkers. Some-
times, indicators of ‘effects’ with unknown biological
consequence have gained widespread use although
the measurements may actually be irrelevant with
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respect to disease risk. An example may be the anti-
oxidant capacity of plasma, which is easy to measure
and even reproducible but antioxidant capacity has
so far never been shown to be associated with dis-
ease risk or to have any other biological consequence
to humans [53–55]. In other cases, these biomarkers
are related to both exposure and effect. This is the
case for repair products resulting from adducts of
reactive compounds with macromolecules, e.g. afla-
toxin B1-deoxyguanosine adducts, sometimes
termed ‘markers of target dose’ to indicate an acute
response phase for these investigative biomarkers.
Some effect biomarkers have well-established mech-
anisms and risk correlates but are not causally re-
lated to risk. Plasma C-reactive protein (CRP), a
well-known acute-phase biomarker in inflammation,
is a good example of such a functional response bio-
marker. CRP has also been clearly associated with
stroke [56]. However, a dietary factor affecting CRP
may not be relevant for modulating the risk of stroke
since CRP is not on the causal pathway to ischemic
stroke [57].

b) Another group of effect biomarkers are those that
are also used as classical biomarkers of risk (see
section 6b), here termed risk-effect biomarkers. Used
as effect biomarkers, they include changes in, e.g.
lipoprotein ratios [58], blood pressure [59] or fasting
plasma glucose levels [60]. Only a dynamic change,
in these biomarkers, represents an effect, i.e. as a re-
sponse to a challenge, a dietary change, a medical
treatment, etc. This application of the measurements
are most often seen in intervention trials where the
focus is whether a certain treatment could poten-
tially affect a disease risk; in this capacity, the risk-
effect biomarkers are usually applied as surrogate
markers of the potential to alter a certain disease risk.
For example, the changes in total, LDL and HDL chol-
esterol could be used to evaluate the hypocholestero-
lemic effects of some bioactives, as in the case of β-
glucans [61] or even by whole food groups as in the
case of fruit and vegetables [62]. The changes in the
risk-effect biomarkers could also be used to evaluate
the potential effect on disease risk reduction by fol-
lowing certain dietary patterns. For instance, change
in blood pressure after intake of Mediterranean diets
during a 4-year period has been used to investigate
the potential mechanism for change in risk of cardio-
vascular disease [63]; also in a 6-month intervention
trial, the changes in fasting plasma glucose, fasting
serum insulin and HOMA-IR were measured to esti-
mate the effect of a defined Nordic diet on the risk of
diabetes [64]. These same measurements may also be
used to characterise a health status or risk in a more
static sense, e.g. as a baseline characteristic in a
nutrition trial and in this case belongs to biomarkers
of susceptibility (see 6b below).
5) Food compound status biomarkers (FCSBs)
represent the current body burden or status of
compounds from food. These compounds may be
nutrients that are actively absorbed and retained or
they may be non-nutrient compounds, including
toxicants, which are able to build up higher concen-
trations in the body because they are lipophilic or
otherwise difficult to clear from the body.

In the case of nutrient status biomarkers (NSBs),

they reveal the status of nutrients in humans, such
as a micronutrient sufficiency or deficiency. For
instance, ferritin could be used as a sensitive
indicator of iron stores [65, 66]; serum cobalamin
levels can be used to detect vitamin B12 deficiency
[67] and red blood cell glutathione peroxidase can
be used to assess current selenium status [29, 68,
69]. The major difference between NIBs and NSBs is
their use; when a biomarker is applied for assessing
nutrient intakes, it is a NIB. When the same
biomarker measurement is used to assess current
nutritional status, it is a NSB. NSBs assess potential
vulnerability or healthiness, which is part of the
variable susceptibility that indicates closeness to
adequacy, deficiency or overload.
Likewise, in the case of non-nutrients, the analo-

gous NoNSBs represent the status of accumulating
non-nutrients (usually toxicants in the human body)
and therefore a cumulative exposure or risk. The
measurement of halogenated organics and heavy
metals themselves could serve as an indicator of their
accumulation in the body over time. For example,
cadmium can be accumulated in the kidneys, reflect-
ing not only long-term exposures but also cadmium-
related disease risk. Urinary cadmium therefore could
be used to assess the cumulative cadmium intake and
current body burden [70]. Since biomarkers of toxi-
cant body burden may be seen as analogous to NSBs,
they are susceptibility-related phenotypic biomarkers
as long as they are used to measure status in compari-
son with an intake limit or to evaluate ensuing health
risks. If the same compounds are measured to esti-
mate average long-term exposure, they would be clas-
sified as NoNIBs. Some hydrophobic non-nutrients
such as lutein and lycopene may also accumulate in
the body; lutein is not considered a nutrient and has
not so far been approved for health claims by EFSA
[71]. However, lutein in combination with certain nu-
trients has documented effects on age-related macular
degeneration following medical use [72] indicating
that lutein levels, particularly in the eye, may serve as
a NoNSB. Plasma lycopene has not yet been shown
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unequivocally to have an effect on health [73]; how-
ever, lycopene has been considered as a biomarker for
cumulative intake of tomato products, since tomatoes
are one of its main sources in the diet [74, 75], thereby
showing potential as a NoNIB.

6) Physiological or health state biomarkers include the
‘classical’ susceptibility and host factor assessment
biomarkers related to known individual health risks. A
host factor may be considered a personal intrinsic
quality or trait influencing susceptibility to disease—or
resilience. As described above, assessment of host
factors or risk sometimes use exactly the same
procedures or assays as those used for determining an
effect of an intervention. However, here they are used
as biomarkers to characterise the individual or a
group with respect to a functional characteristic or to
the susceptibility to develop disease. These biomarkers
represent therefore the variability between individuals
with respect to health as well as with respect to
disease risk. The classification of these biomarkers is
complicated by the fact that some physiological or
health state biomarkers are measured as a response to
a standard (dietary) challenge, e.g. the oral glucose
tolerance test (OGTT). The OGTT is therefore a
response measurement used to characterise an
individual’s current health state or disease risk. In
analogy to the division of effect biomarkers into
biomarkers for a change in functional response and
biomarkers affecting risk, physiological or health state
biomarkers may also be subdivided into (a) host factor
biomarkers and (b) risk biomarkers.
a) Host factor biomarkers encompass a large number
of status biomarkers and cannot (yet) be used to
predict risk. Some are static, for instance, genotypes
represent one of the most static host factors of living
organisms. Obviously, it is only the known
functional gene variants (or haplotype markers) that
may be used as host factor biomarkers. Mutations
do occur but they are random while other host
factors may change over time in a predictable
manner as a functional response to exposures,
challenges or treatments as described for the effect
biomarkers above (section 4). This functional
response may actually change the susceptibility so
that a more adequate response to the challenge is
‘learned’, see Fig. 6. Good examples of altered
susceptibility ‘learned’ by functional responses are
acquired immunity, exercise-improved fitness, and
acquired tolerance to poison by enzyme induction.
Host factors with an ability to be altered by chal-
lenges include nutritional, metabolic, epigenomic,
microbial, immunological and physiologic pheno-
types. These may form complex relationships with
risks. For example, in metabolomics, we can observe
hundreds of metabolites indicating nutritional status,
mostly within normal levels. Collectively, they seem
to be a characteristic of each individual, i.e. a meta-
bolic phenotype reflecting an individual’s current
metabolic abilities and resulting in clustering of re-
peated metabolic profiles from each individual stud-
ied [76, 77]. An example from genetics is that the
ability of fast or slow metabolism of caffeine is not
directly predicting effects on sleep. Homozygotic
carriers of either allele may be equally affected in
their ability to sleep after a cup of coffee since this is
more strongly determined by a polymorphism in the
genes encoding the caffeine sensitivity of the adeno-
sine A2A receptor in the brain [78]. So the latter
polymorphism is the most important host factor de-
termining sleeping ability. The former may be more
important to predict the blood pressure response to
caffeine intake [79]. Both polymorphisms represent
(static) host factors but the latter may also be a risk
modulator related to myocardial infarction [80]. The
impact of these two host factors on risk is still un-
clear so they are not established risk biomarkers.

b) In contrast, risk biomarkers are normally used to
predict specific aspects of an individual’s disease risk
or development. They can be graded on a scale from
altered susceptibility to disease diagnostics or
prognostics. These susceptibility biomarkers are most
often measured in a cross-sectional or individual set-
ting. Specifically, they are used to characterise risk at
baseline in a population or they may be used individu-
ally using a sample collected at a medical practitioner’s
office to determine whether a treatment should be in-
stituted or altered. Biomarkers like systolic blood pres-
sure, OGTT or fasting glucose levels in serum or
plasma are good examples of disease risk/diagnostic
biomarkers with clear international guidelines for how
to interpret readings from an individual and on how
and when to start treatment [81, 82]. Other risk bio-
markers, such as low insulin sensitivity or age, also
have well-described relationships with risk of disease,
and combined risk scores including several suscepti-
bility biomarkers are issued by organizations such as
the American Heart Association [83]. Another more
complex and explorative example is a biomarker
predicting increased breast cancer risk composed of a
combination of questionnaires, metabolomics and
physiological measurements [84]. Such disease risk
patterns from combined data are putative risk bio-
markers but need rigorous validation.

Conclusion
The current pace of dietary and health biomarker dis-
covery and application is higher than ever before due to



a b c

Fig. 6 System training by challenging. a In the naive, untrained but balanced state, the capacity to withstand a challenge is limited. b An
increased challenge intensity will offset the system causing a temporary, weaker state. c Following a biological response such as enzyme
induction, formation of antibodies or muscle re-building, the system becomes more resilient to challenge or stress
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the rapid development of ‘omics’ technologies and ‘big
data’ techniques. As a result, this area can be defined as
frontier research shaping the development of many im-
portant tools for future research in nutrition and health.
Several frameworks for naming and classifying bio-
markers exist. One of them is the common overall div-
ision into exposure, effect and susceptibility biomarkers.
However, this division has been previously described as
very static, resulting in a need for continuous updates
due to the rapid developments in technologies and ap-
plications. There is now an urgent need for the classifi-
cation of biomarkers to be far more flexible. This is
because the actual laboratory or clinical measurement
provided for any biomarker is not directly linked with its
use to measure exposure, effects or susceptibility. The
same assay procedure may be used for all of these pur-
poses, so we believe it is the intended use that best de-
termines the classification of a given biomarker. This
concept provides a much improved and far more flexible
classification scheme for dietary and health biomarkers
that nicely fits into the current complex scenario of re-
search in the nutrition and health area.
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