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The role of PPARγ in childhood obesity-
induced fractures
Matthew R. McCann1,2* and Anusha Ratneswaran2,3,4

Abstract

Globally, obesity is on the rise with ~ 30% of the world’s population now obese, and childhood obesity is following
similar trends. Childhood obesity has been associated with numerous chronic conditions, including musculoskeletal
disorders. This review highlights the effects of childhood adiposity on bone density by way of analyzing clinical
studies and further describing two severe skeletal conditions, slipped capital femoral epiphysis and Blount’s disease.
The latter half of this review discusses bone remodeling and cell types that mediate bone growth and strength,
including key growth factors and transcription factors that help orchestrate this complex pathology. In particular,
the transcriptional factor peroxisome proliferator-activated receptor gamma (PPARγ) is examined as it is a master
regulator of adipocyte differentiation in mesenchymal stem cells (MSCs) that can also influence osteoblast
populations. Obese individuals are known to have higher levels of PPARγ expression which contributes to their
increased adipocyte numbers and decreased bone density. Modulating PPAR*gamma* signaling can have
significant effects on adipogenesis, thereby directing MSCs down the osteoblastogenesis pathway and in turn
increasing bone mineral density. Lastly, we explore the potential of PPARγ as a druggable target to decrease
adiposity, increase bone density, and be a treatment for children with obesity-induced bone fractures.

Keywords: Bone, Bone mineral density, Childhood obesity, Osteoporosis, Bone fractures, Slipped capital femoral
epiphysis, Blount’s disease, PPARγ, Osteoblast, Osteoclast

Background
Childhood obesity and bone density
Obesity has become an international health risk, with
reports indicating its status has been elevated to that
of a global pandemic [1]. Assessment of the 2013 Glo-
bal Burden of Disease showed that the percentage of
individuals with a body mass index (BMI; weight in kg/
height in m2) greater than 25 has increased from 28.8
to 36.9% in men and from 29.8 to 38.0% in women
between 1980 and 2013 [2]. Rates of childhood and ado-
lescent obesity are also increasing in both developed and
developing countries, with no national initiatives success-
fully decreasing obesity rated in the past 30 years [2]. The
cost of obesity and its associated comorbidities are stag-
gering, and in 2014, it was estimated that the total global
cost of obesity was $4 trillion (USD) [3].

In adults, being overweight is defined as having a BMI
greater than 25 and obesity is defined as a BMI greater
than 30 [4]. BMI is still an accurate and valid method of
determining adiposity in children and adolescents [5].
However, unlike adults, there are no set numerical
values, because as children grow, their body composition
and bone structure are altered rapidly. As such, obesity
is defined as having a BMI greater than the 95th
percentile for age and sex. Childhood obesity has been
associated with numerous chronic diseases including
type 2 diabetes mellitus, cancer, hypertension, hyper-
cholesterolemia, and cardiovascular and liver diseases
[6]. However, the effect obesity has on the musculoskel-
etal system is less established [7].

Main text
Bone remodeling and adaptation
Bone is highly responsive to its environment. Wolff’s law
demonstrates that bone is able to adapt and provide ad-
equate strength and rigidity to sustain the mechanical
and physiologic functions of the body. Bone is able to
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achieve these properties by sensing repeated loading or
nutrient availability, which in turn leads to regulation of
the balance between bone deposition and resorption [8].
This active process of bone turnover in children is
termed modeling, and in adults, it is called remodeling.
In healthy individuals, the balance shifts throughout life,
with early years favoring selective deposition, while in
the middle of life, resorption and deposition are bal-
anced and stable. Lastly, in the fifth decade of life, there
is a shift to increased bone resorption and decreased
bone density. Bone is able to regulate this turnover
process through two major cell types: the mesenchymal-
derived osteoblasts that deposit new bone and osteo-
clasts from the hematopoietic lineage that resorb bone.
In early life, bone modeling is critical because bone

mineral density (BMD) is mostly accrued during adoles-
cence and peak bone density is thought to occur
between the ages of 20 and 30 [9]. It is critical to achieve
a high peak bone mass for proper skeletal function but
also to avoid potential issues with low BMD later in life
[10]. Osteoporosis is characterized by decreased BMD
and marked destruction of the trabecular bone struts in
spongy bone. This often results in increased bone frailty
and greater likelihood of fracture. While postmenopausal
osteoporosis is a leading cause of fracture in women,
men also have decreases in BMD as they age but this is
thought to be due to decreases in circulating testoster-
one levels, higher fat mass, and decreased muscle mass
[11]. The clinical definition for adult osteoporosis is a
BMD that is 2.5 standard deviations or more below the
population mean of a healthy 30-year-old adult [12].
While age- and drug-induced osteoporoses are well

known, juvenile osteoporosis is rare and less defined,
and its etiology is not completely known [13]. Juvenile
osteoporosis develops prepubertally and often leads to
compression fractures in the vertebrae and the meta-
physes of long bones [14]. The specific location of
these fractures indicates that it affects the trabecular
bone in a similar manner to adult osteoporosis. These
children have BMD that is less than 2.5 standard devia-
tions from aged-matched healthy controls; however, a
diagnosis of juvenile osteoporosis cannot be made on
dual-energy X-ray absorptiometry (DXA) results alone,
and multiple criteria including past fracture history
and frequency, diet, ethnicity, and height and weight
must be assessed [15].

Clinical studies of adiposity-induced low BMD
Adults with a high BMI are at a lower risk for osteo-
porosis, as increased weight positively correlates with
increased BMD and lower risk of fractures [16]. While
there have been are conflicting reports [17], the con-
sensus is that children with obesity have lower BMD

and increased fracture rates when compared to normal
weight children [18].
Compelling evidence was the large-scale chart review

cross-sectional study that evaluated 913,178 patients be-
tween the ages of 2 to 19 years [19]. In this study, BMI
was stratified into five weight classes (underweight, nor-
mal weight, overweight, moderate obesity, and extreme
obesity), and records were screened for lower extremity
fractures. The overweight, moderate, and severely obese
all had increased odds of fracture in the foot, ankle,
knee, and tibia/fibula when compared to normal weight
controls after adjustment for sex, race, age, neighbor-
hood education, and medical care benefit use. Notably,
the increased fracture risk was higher in those patients
who had a higher BMI. A more recent cross-sectional
study of 2213 children found that only overweight chil-
dren had a higher risk lower limb fractures, and there
was no association between obese patients and normal
controls [20]. Further assessment of upper limb frac-
tures demonstrated that children with forearm frac-
tures were more likely to be higher BMIs when
compared to the age and region reference population
[21]. Interestingly, obesity only appears to affect inci-
dences of fractures in children and does not appear to
affect the severity of fractures [17].
There are many potential explanations why children

with obesity are at a higher risk for fractures, including
altered gait and poor balance, which results in increased
susceptibility to falls [22]. Finite element modeling of
the pelvic bone showed that increased weight and there-
fore higher impact forces in children with obesity further
exacerbated fracture risk in this population [23]. Life-
style factors also contribute heavily to obesity in chil-
dren, including increased sedentary behavior, poor diet
[24], and poor sleeping habits which can lead to weight
gain [25]. Lastly, excessive adipose tissue itself can have
direct molecular and hormonal effects on bone density
during this critical period of rapid skeletal growth [26].
The importance of adiposity in bone development

and modeling cannot be understated, as children with
inadequate levels of fat deposits fail to begin skeletal
maturation during puberty [27]. Conversely, excess
adiposity has shown to increase bone diameter, yet
these bones are less structurally sound and have a
higher incidence of fracture. There is current debate
and conflicting studies as to whether increased adipos-
ity leads to larger bones, increased or decreased dens-
ity, or increased fractures rates (Table 1). Not only are
obese children more likely to have fractures but once
they do, these children have a higher rate of improper
bone reductions and require more subsequent manipu-
lations to correct the misaligned bones [49]. Addition-
ally, children with higher BMIs have a greater
prevalence of open reduction surgery to repair their
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factures [49], which leads to increased surgery compli-
cations [50] and more cosmetic scarring compared to
closed reductions. Fueling further complexity, it has
also been shown that where the deposition of adiposity
is localized also has an impact on bone strength. When
adiposity is deposited as visceral fat, it leads to
decreased bone density in the vertebral bones [42] or
femur [39]. Yet, adiposity deposition in the subcutane-
ous fat has positive associations with bone structure
and strength [39]. In healthy adult women, lean mass
was shown to have a positive correlation to BMD,
while fat mass demonstrated a negative correlation,
with the threshold for fat mass being in the 30 to 38%
body fat range [51]. The threshold for where body fat
percentage becomes detrimental in the pediatric popu-
lation is not known and warrants further study.
The reason underlying differential effects on BMD

from adiposity location is unknown. It is believed that
weight gain in adolescence may limit the periosteum
(outer layer of bone) that normally expands during this
period of rapid growth, thereby decreasing the bones
structure and strength relative to the increasing body
weight [52]. Further, there is little evidence exploring
if the rate of weight gain affects BMD both acutely and
chronically. The rate could have varying effects de-
pending on which stage of puberty it occurs or if it
transcends the years of puberty.

Slipped capital femoral epiphysis
One of the most well-known effects of obesity on bone
is the increased prevalence of slipped capital femoral
epiphysis (SCFE) [7]. This condition is the result of a
non-traumatic fracture between the proximal femoral
epiphysis and metaphysis that typically occurs during
adolescent growth. The exact cause of SCFE is unknown,
but it is multifactorial disease in which obesity is
thought to be a key contributor, and that increased
weight bearing alters loading to the hip joint [7]. A Scot-
tish study reported that the incidence of SCFE rose from
2.78 per 100,000 children in 1981 to 9.66 per 100,000 in
2000 [53]. This was a 2.5-fold increase in two decades,
which parallels childhood obesity rates. A similar trend
was also noted in New Mexico, USA, with a 3.4-fold
increase in 2006 compared to the 1960s [54]. It is
estimated that 30–50% of children with SCFE are over-
weight [55]. The first correlation between high BMI and
increased rate of SCFE was in 2003 by Poussa et al. [56].
Since then, there have been other studies showing
similar results [57, 58] and that the severity of SCFE
increases as BMI increases [59], while the incidence of
bilaterally SCFE also increases [60]. There are conflicting
reports if SCFE is related to vitamin D intake [61], and
yet, a new study shows an association between elevated
serum leptin levels and SCFE, regardless of BMI [62].

This further demonstrates that SCFE is multifactorial
disease that may not be strictly dependent on the
altered biomechanics hypothesis. SCFE patients with
an increased BMI had a worse 20-year follow-up [63],
but reduction of BMI to lower than the 95th percentile
post-surgery decreased the odds of bilateral SCFE
development by 84% [64].

Blount’s disease
Another bone deformity associated with childhood
obesity is Blount’s disease, also known as tibia vara.
This is a progressive disorder that results from altered
growth of the proximal tibia physis and results in varus
deformation of the tibia including tibial rotation and
procurvatum (backwards bending) [65]. While this dis-
ease is relatively rare, two thirds of children with this
condition are obese [66], and the rates of Blount’s dis-
ease are rising in parallel to the increasing prevalence
of obesity in children [67]. An 8-year longitudinal
study showed that patients with early-onset Blount’s
disease (< 4 years of age) have a greater severity of the
disease [68], which can also lead to early degenerative
osteoarthritis in early adulthood [69].
The current etiology of Blount’s disease is unknown.

In addition to obesity, there appear to be differences
between age, sex, and race [65] and minerals such as
zinc and copper [70], and there are mixed results regard-
ing association with vitamin D levels [71, 72]. In these
early-onset cases, excess weight causes bowing of the
tibia, leading to altered pressure on the epiphysis,
improper ossification of the cartilage in the medial meta-
physis, and insufficient growth of the medial physis [73].
The longitudinal growth of the tibia via the physis is dis-
rupted by these compressive forces in a process called
the Hueter-Volkmann’s law [74]. While weight may be a
contributing factor to alterations in the growth plate, it
is unlikely that this is the sole cause for the development
of Blount’s disease [75]. Histopathological evaluation of
the growth plate in these patients demonstrated cellular
disorganization of the growth plate and impaired differ-
entiation of chondrocytes into hypertrophic cells (a simi-
lar cellular disorganization is seen in SCFE) [76]. It is
thought that PPARγ initially causes delayed maturation
in the growth plate and the added mechanical stress
from the increased body weight results in impaired ter-
minal differentiation and malalignment [77].
Upon clinical diagnosis of Blount’s disease, surgical

intervention is usually recommended in conjuncture
with a pediatric obesity specialist to implement a
weight loss program to prevent reoccurrence [78].
However, after successful surgical intervention, correc-
tion of the misalignment, and post-surgical nutritional
counseling, 78% of these patients still continued to
gain weight after 48 months of follow-up [79].

McCann and Ratneswaran Genes & Nutrition           (2019) 14:31 Page 6 of 11



In summary, it is apparent obesity can have devastat-
ing effects on the skeletal system, and these conditions
cannot be attributed to the effects of the increased
weight bearing alone. Therefore, there are potential
other mediators that may be driving decreased BMD in
children with obesity. Some of these mediators may
stem from factors involved in bone development, such
as the opposing lineage differentiation pathways
between adipose tissue and bone tissue. To further
understand the complex relationship between child-
hood obesity, decreased BMD, and conditions like
SCFE and Blount’s disease, it is critical to examine
which molecular regulators are responsible for the
regulation of bone turnover and adiposity and how
they change in the associated pathologies.

Cellular and molecular regulators of bone remodeling
Bone is under strict control of its remodeling, through
a delicate and complicated mechanism known as bone
coupling which regulates bone turnover of the whole
skeleton to approximately 10% per year [80]. In this
process, both trabecular and cortical bone are de-
graded and rebuilt, yet at different rates. The initiation
step is the recruitment of hematopoietic precursor
cells through capillary blood vessels that supply the
cortical bone or precursors that are already present in
the marrow cavity for trabecular bone. Homing of
these precursor cells is directed by endocrine and
paracrine factors released from endothelial cells, such
as nitric oxide, vascular endothelial growth factor
(VEGF), macrophage colony-stimulating factor (M-
CSF), and a receptor activator of nuclear factor-κB lig-
and (RANKL) [73]. The latter two factors are secreted
from osteoblasts and their mesenchymal precursors to
regulate osteoclast recruitment and therefore bone re-
sorption. Additionally, osteoblasts have the ability to
secrete osteoprotegerin, which can bind and sequester
RANKL, thereby inhibiting its ability to bind to RANK
and thus limiting osteoclast differentiation [81].
Importantly, osteoblasts have their origins from a

separate lineage than the osteoclast, as they are derived
from MSCs that are situated in the bone marrow itself.
These MSCs are multipotent and are able to differenti-
ate into multiple cell types including, cartilage, ten-
dons, myocytes, and notably osteoblasts and adipocytes
[82]. Each of these committed differentiation pathways
has their own lineage commitment and maturation fac-
tors. These factors can be either exogenous to the cell
such as hormones, growth factors, and physical envir-
onment (stiffness of the extracellular matrix) or en-
dogenous mechanisms such as age and metabolism.
The differentiation of MSCs into adipocytes is regu-
lated by PPARγ and CCAAT-enhancer-binding

proteins (C/EBPs) [83] and osteoblast differentiation is
governed by Runx2 and Osterix [84] (Fig. 1).

Role of PPARγ in osteoblastogenesis and bone density
PPARγ is a nuclear receptor that is primarily expressed
in adipose tissue and in MSCs residing in the bone
marrow [85]. PPARγ is a master regulator of adipogen-
esis [86], indicating that it is at the top of the regula-
tory network hierarchy and is able to govern lineage
specification. It has been described as a “metabolic
switch” for stem cell fate in the mesenchymal and
hematopoietic lineages [87].
PPARγ’s role as a master regulator was shown in a

well-designed study by Akune et al., where genetically
modified embryonic stem cells lacking PPARγ

Fig. 1 Effects of PPARγ activation on adipocyte and osteoblasts
differentiation. A simplified schematic diagram that shows the
effects of PPARγ on mesenchymal stem cell differentiation. PPARγ
activation, in conjunction with C/EBPs, is able to cause
differentiation of mesenchymal stem cells down the adipogenesis
pathway and thereby inhibiting differentiation of osteoblasts. PPARγ
activation results in a positive feedback loop that increases
adipogenesis. As a result, more adipose tissue is accumulated at the
expense of osteoblastogenesis and matrix deposition. This switch
inhibits bone mineral density and bone functional loading capacity
and therefore leads to an overall increased risk of fracture in the
childhood population
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spontaneously differentiated into osteoblasts and failed
to produce adipocytes [85]. They further conducted an
in vivo mouse model experiment which showed that
PPARγ haploinsufficient mice had increased bone mass
and osteoblastogenesis from bone marrow progenitors,
indicating that PPARγ is indeed a suppressor of MSC
to osteoblast lineage differentiation. However, it was
unknown if these effects were acting directly on osteo-
blasts or indirectly through osteoclasts. Follow-up
studies were conducted using selective deletion of
PPARγ from the hematopoietic lineages and thus sub-
sequent inactivation in osteoclasts while maintaining
expression in osteoblasts [88]. In these conditions, the
increased bone mass and reduced marrow cavity space
are a consequence of impaired osteoclast differenti-
ation and thus impaired bone resorption. Therefore,
PPARγ can elicit its response through both promoting
osteoclast-driven bone resorption and/or by decreasing
osteogenesis by inhibiting MSC to osteoblast differen-
tiation. Compelling in vivo data has shown that
mutating a phosphorylation site of PPARγ and thus
rendering its inhibition properties inactive results in
unregulated PPARγ activity that decreased bone
volume in trabecular bone compared to wild-type lit-
termates. This study also demonstrated that in these
mutant mice, adipocytes markers were elevated and
isolated bone marrow stem cells had increased levels
PPARγ and preferentially differentiated to adipocytes
rather than osteoblasts [89]. It was also observed that
phosphorylated Runx2 (a driver of osteoblastogenesis)
and osteoblastogenesis were inhibited. Overall, this in-
dicates that in the bone marrow, Runx2 and PPARγ
are reciprocally controlled and are important regula-
tors of bone formation and turnover.
Clinically, screening obese patients for PPARγ ex-

pression indicated that levels of PPARγ increased in
proportion to increased BMI [90]. Additionally, adipo-
cyte differentiation was found to perpetuate through
multiple positive feedback loops, which seek to drive
adipogenesis [91], making it difficult to break the cycle
of adipogenesis once it has begun. Pharmacological ac-
tivation of PPARγ can be achieved by the administra-
tion of antidiabetic drugs, the thiazolidinediones, in
which rosiglitazone is prime example. These drugs
regulate adipocytes to produce endocrine factors that
make peripheral tissue more sensitive to insulin, yet
they also increase fat storage [92]. In a 14-week ran-
domized, double-blind, placebo-controlled administra-
tion of the rosiglitazone on post-menopausal women
inhibited bone formation and decreased BMD as early
as 4 weeks into the treatment and was sustained for
the rest of the trial [93]. This suggests that promotion
of PPARγ activity through pharmacological agonist
rosiglitazone has opposite effects to genetic inhibition

of PPARγ, and they may act through the same mecha-
nisms, as expected.
PPARγ’s effects on bone homeostasis are known to be

context specific [87]. In an animal model, rosiglitazone
was shown to have age-dependent effects; in young mice,
rosiglitazone decreased the rate bone formation, while in
old mice, there was increased bone loss [94]. This has
been shown to be due to downregulating expression of
Runx2, Osterix, and Opg [95, 96]. This distinction indi-
cates that there must be endogenous changes present
within the bone marrow milieu. Aging has been shown
to increase the expression of PPARγ [97] and decreases
its interaction with its coactivator SRC-1, leaving it
primed for adipogenesis later in life [98]. These age-
specific changes in PPARγ resemble how adiposity
affects bone density and fracture risk differently in chil-
dren and adults. This is further demonstrated between
two randomized clinical trials testing the effect of rosi-
glitazone on maintaining long-term glycemic control.
The adult-based ADOPT (A Diabetes Outcome Progres-
sion Trial) found that women receiving rosiglitazone
alone had a greater propensity of upper and lower limb
fractures then either metformin or glyburide alone [99].
Conversely, the child Treatment Options for type 2
Diabetes on Adolescent and Youth (TODAY) found no
differences in bone mineral content or fracture rate
between metformin alone, metformin plus rosiglitazone,
or metformin plus lifestyle intervention [100]. Although,
these results should be taken with caution as the
TODAY trial had low sample size. A follow-up report
on the TODAY trial showed that patients who were
given metformin and rosiglitazone had a lower BMD
compared to patients of in metformin and lifestyle
moderation (200–300 min/week of physical activity and
improved diet) arm, after 24 months [101]. Direct com-
parison is complicated as there was no rosiglitazone
alone treatment in the TODAY trial and that the lifestyle
intervention could affect bone accrual.

Conclusion
Childhood obesity has significant effects on the mus-
culoskeletal system and in particular bone density and
fracture rate. Therefore, it is important to know how
obesity affects the skeleton during adolescence, as this
is a critical window of bone growth and structural
support. A key mediator in this process is PPARγ as it
directly effects adipogenesis and indirectly alters osteo-
blastogenesis. SCFE and Blount’s disease are two
serious bone conditions associated with childhood
obesity. To our knowledge, there are no preclinical
models of SCFE or Blount’s disease, but evidence from
adult trials of PPARγ agonist rosiglitazone indirectly
suggest that agonism of the PPARγ pathway results in
decreased BMD and increased fracture risk. However,
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preclinical evidence suggests that this effect may not
be as severe before adulthood. Future studies should
determine if PPARγ is a suitable candidate for pharma-
cological intervention to treat both obesity and child-
hood low bone density which may influence the
incidence of SCFE and Blount’s disease.
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