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Abstract

A major revelation of genome-scale biological studies in the post-genomic era has been that two-thirds of human
genes do not encode proteins. The majority of non-coding RNA transcripts in humans are long non-coding RNA
(IncRNA) molecules, non-protein-coding regulatory transcripts with sizes greater than 500 nucleotides. LncRNAs

are involved in nearly every aspect of cellular physiology, playing fundamental regulatory roles both in normal

cells and in disease. As result, they are functionally linked to multiple human diseases, from cancer to autoimmune,
inflammatory, and neurological disorders. Numerous human conditions and diseases stem from gene-environment
interactions; in this regard, a wealth of reports demonstrate that the intake of specific and essential nutrients, includ-
ing vitamins, shapes our transcriptome, with corresponding impacts on health. Vitamins command a vast array of bio-
logical activities, acting as coenzymes, antioxidants, hormones, and regulating cellular proliferation and coagulation.
Emerging evidence suggests that vitamins and INcRNAs are interconnected through several regulatory axes. This type
of interaction is expected, since INcRNA has been implicated in sensing the environment in eukaryotes, conceptu-
ally similar to riboswitches and other RNAs that act as molecular sensors in prokaryotes. In this review, we summarize
the peer-reviewed literature to date that has reported specific functional linkages between vitamins and IncRNAs,
with an emphasis on mammalian models and humans, while providing a brief overview of the source, metabolism,
and function of the vitamins most frequently investigated within the context of INcRNA molecular mechanisms,

and discussing the published research findings that document specific connections between vitamins and IncRNAs.
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Introduction

Genome-scale biological studies in the post-genomic
era have revealed an unprecedented level of complexity
in the genome, spurring the ever-growing expansion of
new frontiers in genomics-driven and precision medi-
cine. A direct outcome of the efforts of international
consortia, such as Functional Annotation of the Mam-
malian Genome (FANTOM) and Encyclopedia of DNA
Elements (ENCODE), in the first post-genomic decade
(2003-2013), and supported subsequently by the results
of next-generation DNA/RNA sequencing technolo-
gies, was the major unexpected discovery that over 80%
of the genome is functionally active [1]. While just 1.5%
of the genome encodes proteins, the remaining 98.5% is
non-coding. These noncoding regions, once dismissed
as “junk” DNA but now understood to be abundantly
functional, encompass diverse regulatory units that work
both at the genomic and epigenetic levels (for instance,
enhancers and cis and trans, proximal and distal regula-
tory elements) as well as at the transcriptomic level as
transcriptional units that give rise to macro and micro
non-coding RNAs. Of the former (macro) ncRNAs,
IncRNAs are estimated to be encoded by anywhere from
15,000 to 80,000 distinct Joci in humans [2—4]. LncRNAs
with emerging regulatory functions in different pathways
of cellular biology are gaining attention in recent years
since they have been functionally associated with a wide
range of human diseases, and many of them are now
being intensively pursued as potential targets for thera-
peutics. According to the definition currently adopted
by the ncRNA-biology community, IncRNAs are defined
as non-protein-coding RNA molecules greater than 500
nucleotides in length [5]. In the two decades that have
elapsed since the discovery of their widespread inci-
dence, it has been widely accepted that IncRNAs regu-
late gene expression at epigenetic, transcriptional, and
post-transcriptional levels [6]. Although IncRNAs do not
code for any known proteins or long peptides in their
classical definition, recent findings have demonstrated
that certain IncRNAs translate into micropeptides with
regulatory roles in cells [7, 8]. Long non-coding tran-
scripts outnumber protein-coding genes in mamma-
lian genomes (comprising approximately two-thirds
of human genes) and, relative to protein-coding genes,
are poorly conserved between closely related species
and lineages in evolution, more weakly transcribed, and
possess striking cell-type and tissue specificity [6]. The
occurrence of IncRNAs in numerous disparate biologi-
cal contexts is commensurate with their profound impli-
cations for human health and disease. They are already
firmly functionally linked to multiple human diseases,
from cancer to autoimmune, inflammatory, and neuro-
logical disorders [9]. At the cellular level, dysregulation
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of IncRNAs affects cell proliferation, cell metabolism,
cell differentiation, apoptosis, angiogenesis and metasta-
sis, and genomic instability [10].

LncRNAs are mainly transcribed by RNA polymer-
ase II (Pol II), and similarly to mRNAs, 7-methylguano-
sine capping and polyadenylation occur at their 5 and
3’ ends respectively [11], and the majority of IncRNAs
in humans are cytoplasmic [12]. Based on their rela-
tive position and directionality with respect to nearby
and overlapping protein-coding genes, they are catego-
rized into several classes (corresponding to ENCODE’s
Gencode biotypes), including but not limited to sense
overlapping, antisense, bidirectional promoter sharing,
intronic, and intergenic IncRNAs. They act through mul-
tiple, highly heterogenous, positive as well as negative,
epigenetic as well as post-transcriptional, gene-specific
as well as global, mechanisms to regulate gene expression
(Fig. 1). Illuminating the molecular mechanisms behind
their function provides the opportunity to discover new
diagnostic markers and therapeutic targets. Among many
other well-characterized roles, IncRNAs can sequester
and interact with miRNAs and mRNAs, form RNA-
protein complexes, and serve as the host transcripts
processed to produce miRNAs and other diverse small
RNAs, hence indirectly modulating the expression of
target genes. The association of IncRNA, miRNA, and
mRNA regulatory networks points to new directions of
discovering promising therapeutic targets. The 3D struc-
ture of IncRNAs with different domains (protein-binding,
other-RNA-binding, DNA-binding, and linkers) can pro-
vide a scaffold to assemble multiple proteins into RNA—
protein complexes. This can control the sequences of
protein recruitment events to modulate gene expression
or facilitate the formation of intracellular structures such
as nuclear speckles and paraspeckles [13]. Guide IncR-
NAs direct regulatory factors, such as chromatin modi-
fiers and transcription factors, into specific regions of
the genome. LncRNAs, in addition to functioning at the
RNA level, have the potential to code for micropeptides,
which add an extra layer to regulatory networks [11].

Numerous human conditions and diseases stem from
environmental factors or gene-environment interac-
tions. The field of nutrigenomics investigates how food
and nutrition interact with individual genes to affect
gene expression signatures and hence a person’s health
and risk of developing diseases [16]. Recent evidence
suggests that vitamins and IncRNAs are interconnected
through defined regulatory axes. This type of interac-
tion is expected, since IncRNA in eukaryotes, similarly to
prokaryotic riboswitches, are thought to be at the fore-
front of sensing the environment [17, 18]. In this review,
we aimed to summarize contemporary peer-reviewed
literature that identified specific functional linkages
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Fig. 1 Selected major mechanisms of action of long noncoding RNAs (INncRNAs). a LncRNA may function as a sponge or a competing endogenous
RNA (ceRNA) [14] for specific miRNAs to consequently nullify the silencing of target mRNAs by those miRNAs. b LncRNAs may act as hosts of,

and hence be processed into, small RNAs including miRNAs, to promote silencing of the target mRNAs. ¢ LncRNAs could assemble a set of proteins
to enable a biological event such as suppression or activation of genes or forming nuclear subcompartments (including paraspeckles) by serving

as an architectural scaffold. d Signal IncRNAs can facilitate the recruitment of proteins into a particular part of the genome for further modification.
e LncRNA may entrap proteins, such as histone modifying enzymes or transcription factors to block their binding to the specific part of the genome
and hence indirectly affect the expression of those proteins'target genes. f Selected INcRNAs may encode micropeptides with regulatory roles

in the cells [7, 15]. Created with BioRender.com

between vitamins and IncRNAs in humans or mamma-
lian models. We first provided a brief overview of the
source, metabolism, and function of vitamins in their
related sections. We then tabulated and discussed the
available research, highlighting any links between vita-
mins and IncRNAs. To our knowledge, this is the first
review that has comprehensively profiled the co-contri-
bution of IncRNAs and multiple vitamins to common
pathways, beyond the vitamin D/VDR pathway that has
been the focus of prior published studies [19-21].

Vitamins, a brief history

The necessity of vitamins for human life was widely recog-
nized after it was first comprehensively characterized by
Casimir Funk in 1912 [22]. Funk summarized that adding
a trace of these “magical substances” to the diet could sim-
ply rescue the devastating diseases such as scurvy, rickets,
beriberi, and pellagra. He is considered the ‘father of vita-
min therapy’ and coined the term “vitamin” (‘vita’ indicative
of a vital substance and ‘amine’ as he thought this essen-
tial substance is a chemical amine). However, after it was
found that the other compounds in this class do not con-
tain necessarily an amine group, it is shortened to ‘vitamin’

regardless of their chemical makeup. Soon afterward, dif-
ferent types, natural sources, and chemical structures of
vitamins were identified. Vitamins are generally catego-
rized based on their solubility into fat-soluble (e.g., vita-
mins A, D, E, and K) and water-soluble vitamins (e.g., B and
C) with distinct physical and biochemical characteristics.
Their biological roles and association with metabolic path-
ways and diseases were quickly determined. Vitamins com-
mand a vast array of essential biological activities, acting as
coenzymes, antioxidants, hormones, and regulating cellular
proliferation and coagulation. Following the introduction
of molecular biology into the field of nutrition to address
different individuals’ responses to nutrition, the branch
of molecular nutrition developed. The concept of the lac-
tose operon was proposed by Jacob and Monod (1961) as
the first example of gene-nutrition interaction [23] which
was then demonstrated by Shapiro et al. (1969) [24]. Now,
in the era of high-throughput genomics and multi-omics
approaches, a wealth of reports demonstrates how our
dietary intake can shape our transcriptome, with potential
impacts on health status, taking this topic from its infancy
in 20th-century biology of prokaryotes to its blossoming
maturity in the post-genomic eukaryotic genetics’ era.
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Functional link between fat-soluble vitamins (A, D,
E And K) and long non-coding RNAS

Vitamin A

Vitamin A is bioavailable in three forms: retinol, retinal,
and retinoic acid. It has long been explored as a key illus-
tration of the regulation of gene expression by a nutri-
ent. Retinol has a number of downstream metabolites,
namely all-frans retinoic acid (AtRA), and 9- or 11-cis
retinoic acids. These metabolites can activate their cog-
nate receptors in the nucleus, thus regulating expression
of target genes [25]. This nutrient and its metabolites
exert pleiotropic impacts in a variety of tissues affecting
developmental processes, proliferation and apoptosis
of cells and metabolic pathways [25]. The interactions
between vitamin A (and/or its metabolites) and IncRNAs
have been studied in different pathological conditions,
such as autism, multiple types of brain disorders, congen-
ital scoliosis, and several cancers (Table 1).

Vitamin A metabolism-associated disorders in pregnancy
and early development
Vitamin A supplementation may help to manage and
treat autism-like behaviors induced by prenatal expo-
sure to the anticonvulsant drug valproic acid (VPA) in a
rodent model, by acting through the IncRNA/mRNA axis
NONRATTO021475.2/Dhh in pregnant rats [26]. Vita-
min A plays a key role in central and peripheral nerv-
ous system embryonic development, and several studies
implicated vitamin A supplementation as a treatment
for autism spectrum disorder (ASD) [33, 34]. Prena-
tal exposure to VPA decreased serum levels of vitamin
A, and significantly altered the expression of more than
200 IncRNAs and 300 mRNAs. RT-PCR confirmed the
upregulation of 4 IncRNAs and 6 mRNAs participat-
ing in neural function and developmental processes,
through IncRNA-mRNA co-expression networks, such
as NONRATT021475.2-Desert hedgehog (Dhh). Besides,
vitamin A supplementation was able to restore that
regulatory network, reducing the autism-like behaviors
induced by VPA in the hippocampus of offspring [26].
Congenital scoliosis (CS) is a sideways curvature of
the spine caused by abnormal vertebrae growth during
embryogenesis [35]. Vitamin A is known to play impor-
tant roles in the pathogenesis of CS; maternal vitamin
A deficiency induces CS deformities in rat offspring
[36]. The retinol-retinoic acid metabolism pathway is
impaired in a rat model of congenital kyphoscoliosis [37].
A vitamin A deficiency-induced congenital scoliosis rat
model showed a dynamic correlation between IncRNA
SULT1C2A, rno-miR-466¢-5p, and Foxo4 expression,
where SULT1C2A regulates Foxo4 by targeting rno-
miR-466¢-5p through PIBK-ATK signaling [27]. Specifi-
cally, rno-miR-466¢-5p downregulates Foxo4, reducing
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AKT and p85 (the regulatory subunit of PI3K) phos-
phorylation. These effects are reversed by SULT1C2A
(whose expression is increased in CS) which, by acting
as a ceRNA of rno-miR-466¢-5p, upregulates Foxo4 [27].
Similarly, there is coordinated IncRNA/mRNA network
deregulation in vitamin A deficiency-induced congenital
scoliosis. The association of mRNAs and ncRNAs in the
pathogenesis of CS has been demonstrated by transcrip-
tome sequencing [28].

Vitamin A metabolism-associated disorders

during adulthood

Regulation of IncRNAs by vitamins, as an integral part of
vitamin-regulated gene expression programs, is also sup-
ported by the recent demonstration of 300 differentially
expressed (DE) transcripts, including 232 protein-cod-
ing gene mRNAs, 28 endogenous cis-antisense tran-
scripts, and 40 IncRNAs, correlated with vitamin A, fatty
acid, and steroid hormone metabolism. That study also
revealed that vitamin A metabolism in liver affects feed
efficiency in pigs [29]. RNA-seq of monocytes demon-
strated that vitamins A and D modulate transcriptional
regulation of host ncRNAs in fungal and bacterial infec-
tions, regulating the pro-inflammatory response. The
IncRNAs LINCO00595, SBF2-AS1, RP11-588G21.2, and
RP11-394113.1 were identified in that study as potential
biomarkers of and putative therapeutic targets in fungal
infection [30]. The vitamin A metabolite all-trans reti-
noic acid (AtRA) transcriptionally upregulates the inter-
genic IncRNA, LINC-RBE, in adult rat hippocampal
neurons [31]. Studies pointing to a functional relation-
ship between vitamin A and IncRNAs are summarized in
Table 1.

Vitamin D and The Vitamin D Receptor (VDR)

Vitamin D exerts its role through modulating the activ-
ity of the vitamin D receptor (VDR). This receptor is
a nuclear-receptor transcription factor, one of over 40
human transcription factors that, upon binding the cog-
nate receptor, translocate from the cell surface through
the cytoplasm into the nucleus, where they bind the pro-
moters of the direct-target genes that they activate and/
or repress. Establishment of the complex between VDR
and its ligand, the active form of vitamin D, i.e. vitamin
D 1,25(0OH),D;, leads to the translocation of the acti-
vated VDR from the cytoplasm into the nucleus and
hence to the direct regulation of expression of hundreds
of genes, including those involved in infection response
and immune disorders [38], through the binding of VDR
to the promoters and regulatory elements of those genes.
Figure 2 represents an overview of vitamin D metabolic
pathways. Figure 3 shows the molecular pathways through
which VDR affects gene expression in target cells.
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Vitamin D Metabolic Pathway in Human
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Fig. 2 Vitamin D is obtained through two main sources: cutaneous synthesis and oral intake. UVB radiation (290-315 nm) photolyzes
7-dehydrocholesterol to pre-vitamin D3 which in turn is converted to vitamin D3 by isomerization through a thermo-sensitive reaction

in the epidermis. Upon binding to vitamin D binding protein (DBP), the synthesized vitamin D3 traverses the systemic circulation to the liver. In
the liver, vitamin D3 is hydroxylated to produce 25-hydroxyvitamin D3 [25(0OH)D3], the major circulating vitamin D metabolite. DBP transports
25(0OH)D3 to the kidney where it is converted to calcitriol (1,25-dihydroxyvitamin D3 [1,25(0H),Ds]), a potent steroid hormone and the active

metabolite of the vitamin D. Created with BioRender.com

The interactions between vitamin D/VDR and IncR-
NAs have been assessed in different disease contexts,
including cancer, neuropsychiatric disorders and coro-
nary artery disease. Evidence of the specific functional
relationships between vitamin D/VDR and IncRNAs
is summarized in Table 2. Notably, the protective role
of vitamin D against breast cancer through IncRNA-
mediated pathways has been elucidated in detail [19,
20]. Here we provided an update of current research and
extracted the main regulatory axes with vitamin D/VDR
and IncRNAs as reported there (Table 2). Moreover, we
consider the fact that although vitamin D and VDR are
recognized as faithful classical partners, either one can
modulate intracellular activities via other pathways,
independently of each other. Hence, we separated stud-
ies into those that investigated the effect of 1,25(OH)2D3
treatment only, those that focused on VDR itself (by
induction or gene expression assessments), and those
that jointly evaluated the effect of 1,25(OH)2D3 treat-
ment and VDR at the same time. Molecular pathways
and axes through which vitamin D and VDR are linked
to the IncRNAs are shown in Fig. 4. MALATI, the
snoRNA host genes SNHG16 and SNHG6, LINC00346
and LINCO00511 are among VDR-associated IncRNAs
identified through an in silico approach in breast can-
cer [48]. Further experiments have shown upregulation
of VDR, MALAT1 and LINCO00511 in breast tumors
relative to nearby non-cancerous samples, and associa-
tions between clinicopathological data and expression of
VDR-associated IncRNAs [48]. These IncRNAs have also

been examined in Parkinson’s disease [49], bipolar disor-
der [50], schizophrenia [51], and epilepsy [52].

Figure 4 shows pathways through which vitamin D and
VDR are linked to specific IncRNAs.

In addition to the several reports of dysregulation
of VDR-associated IncRNAs in different disorders,
other studies have revealed functional evidence of a
regulatory relationship between vitamin D/VDR and
specific IncRNAs (Table 3). For instance, Kanemoto
et al. combined in silico and expression assays in
human cell lines to identify vitamin D-regulated non-
coding RNAs. Their approach led to the identification
of four IncRNAs which are directly regulated by this
vitamin. These findings have been confirmed by iden-
tification of consensus VDR-binding motifs in the cod-
ing regions of these IncRNAs. Notably, the antisense
transcript from the HSD17p2 locus (AS-HSD17pB2) is
among these directly vitamin-D-regulated IncRNAs.
This transcript has been shown to attenuate HSD1732
expression [40]. IncBCAS1-4_1 is an IncRNA func-
tionally associated with vitamin D signaling in ovarian
cancer cells, and is involved in the epithelial-mesen-
chymal transition in ovarian cancer [42]. Moreover,
expression of MALAT]1 is affected by vitamin D status
in patients with coronary artery disease and healthy
subjects [46]. In type 2 diabetes mellitus (T2DM), the
IncRNA LINCO01173 was upregulated in the blood of
vitamin-D deficient T2DM cases, relative to controls
[63]. Additional examples of this type of correlative
finding are presented in Table 3.
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Fig. 3 Tracing the fate of 1,25(0H),D; the active form of vitamin D in target cells. The lipophilic nature of 1,25(0OH),D; helps it to passively

cross cell membrane without a transporter and bind to VDR in the cytoplasm and/or the nucleus. As a nuclear transcription factor, VDR regulates
the transcription of target genes in a ligand-dependent manner. Upon binding to 1,25(0H),Ds, VDR enters the nuclei and heterodimerizes

with the retinoid X receptor (RXR). The active VDR/RXR complex is then able to bind specific consensus sequences, vitamin D response elements
(VDREs), at the promoters of its direct target genes. It also initiates the recruitment of co-activators or co-repressors to modulate the target

genes so as to maintain homeostasis. Beyond VDR, its classical partner, 1,25(0H),D; can also bind to membrane-embedded receptors and affect
cytoplasmic signaling cascades through its non-transcriptional activities [39]. Direct or indirect downstream IncRNA targets of the vitamin D/
VDR signaling pathways include AS-HSD1732 in prostate cancer [40], H19 in colon cancer [41], INcBCAS1-4_1 [42] and TOPORS-AST [43] in ovarian
cancer, LUCATT1 in oral squamous cell carcinoma (OSCC) [44], MEG3 in colorectal cancer (CRC) [45], MALAT1 in coronary artery disease (CAD) [46],

and HOTAIR in multiple sclerosis [47]. Created with BioRender.com

Vitamins E and K

Both vitamin E and vitamin K are fat-soluble vitamins
that are absorbed by the small intestine via lipid trans-
porters and micelles. In the blood, they are carried by
lipoproteins and delivered to a variety of tissues. The
liver plays a key role in recognizing and metabolizing
these vitamins. The excess or non-essential forms of
these vitamins are excreted by the body through a series
of oxidation reactions. Bioavailability and nutritional

requirements of these vitamins vary depending on age,
gender, genetics, lifestyle, and smoking [68—70].

In its natural form, vitamin E consists of four tocophe-
rols (aT, BT, yT, 8T) and four tocotrienols (aTE, PTE,
YTE, 8TE) with a-tocopherol being the dominant iso-
form that our body retains [69]. In the cells, vitamin E
metabolites, along with vitamin C, neutralize free radi-
cals, nitrogen oxides, and other electrophilic mutagens.
Besides their antioxidant activities, non-antioxidant gene
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— {LUCAT1-ERK1/2 -»p-ERK1/2 -»OSCC growth inhibition

1
> T MALAT1/CD63- | NfkB— ! IL6— Positive role of VitD in treating
vascular complication in T2D & CAD

|ﬂ",1 H19- * miR-675-> L VDR — 1 Diabetic neuropathy
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— TIncBCAS-1_4-1- T N-cadherin, T Vimentin, T ZEB1- Epithelial-Mesenchymal Transition (EMT)

T VDR- T TOPORS-AS1-» Interacting with
hnRNPA2B1- ! B-catenin— Growth supress

—» Oxygen deficiency— THIF—>
T H19- T VDR—Cardiomyocyte apoptosis

TH19- ! miR-22-5p or T miR-
675-5p— TVDR— 1T IL-17A and IL-23
cytokines—» T Inflammatory response

Myocardial ischemia
Ankylosing spondylitis

Ovarian cancer

B Vit D Receptor

c Treatment with 1a,25(0H),D; &
VDR transcript assessment

Ma, (or curcumin treatment)— | H19- 1 miR-675— 1 VDR - | tumor volume ( T apoptosis)
Prgstgte cancer VD (1a,25(0H).D;) treatment & TVDR— T AS-HSD17B2— | HSD17B2- Potential contributor in pathogenesis of prostate cancer
T MEG3- T FBXW7-Ubiquitin-dependent degradation of c-Myc— I MYC-» suppression of aerobic glycolysis in CRC cells

RC
——— > VD (10,25(0H).D;) treatment or T VDR— T MEG3-» | Clusterin— inhibition of cell proliferation, migration and metastasis

—CRC>T H19- T miR-675-5p— ! VDR- | Antitumour effect of 1a,25(0H).D;) treatment

T emycatMadte— |

Fig. 4 Molecular pathways and axes in human disease, inferred from the published literature coupling the vitamin D / VDR pathway to long
noncoding RNAs (IncRNAs). Since 1,25(0H),D; can affect intracellular pathways via different VDR or/and non-VDR partners, we categorize

the pathways into those that are suggested after treatment with 1,25(0H),D; (A, the top left), those that focused on VDR itself (B, induction or gene
expression assessments) (top right), and those that jointly evaluated the effect of 1,25(0H),D; treatment and VDR at the same time (C, bottom). See
Table 3 for details. CRC: Colorectal cancer; DM: Diabetes Mellitus. Created with BioRender.com

regulatory actions have been demonstrated for them
[71]. The activity of protein kinase C is modulated by
a-tocopherol, hence broadening the latter’s role beyond
antioxidant functions [72]. Modulation of key signaling
pathways such as MAPK, PI3K/Akt/mTOR, Jak/STAT,
and NF-«kB, with anti-inflammatory, immunoregulatory,
neuroprotective, anti-proliferative, pro-apoptotic, and
anti-angiogenetic outcomes following vitamin E intake,
is now documented [73]. Through gene expression pro-
filing methods such as microarray and RNA sequencing,
in vivo and in vitro vitamin E intervention studies dem-
onstrated that it affects the expression profile of diverse
mRNAs and microRNAs in the liver and potentially in
extrahepatic tissues.

To the best of our knowledge, no published data sup-
ports the contention that vitamin E may also func-
tion through a IncRNA-dependent pathway. However,
alpha-tocopherol can prevent ferroptosis, a type of iron-
dependent programmed cell death associated with blood

and neurological diseases, ischemia—reperfusion injury,
kidney injury, inflammation, and cancer [74]. Ferropto-
sis-related IncRNAs have been reported in a wide range
of cancers, including hepatocellular carcinoma [75], head
and neck squamous cell carcinoma [76], colorectal can-
cer [77], and stomach adenocarcinoma [78]. Future stud-
ies are expected to define vitamin E/ferroptosis-related
IncRNAs axes [79]. Vitamin E is a known modulator of
specific miRNA expression [80], and due to the preva-
lence of integrated miRNA-IncRNA-mRNA regulatory
networks, future studies will almost certainly define vita-
min-E-dependent examples of these additional regula-
tory axes.

The Vitamin K group of hydrophilic naphthoquinone
compounds mainly features two forms: K1 (phyllo-
quinone) and K2 (menaquinones) [81]. It is an essen-
tial cofactor for the post-translational modification of
particular proteins involved in bone metabolism and
blood coagulation like prothrombin and factors VII,
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IX, and X. Vitamin K regulation of gene expression has
been abundantly documented in the past two decades.
Binding of VitK2 to the steroid and xenobiotic recep-
tor (SXR) affects the expression of key genes involved
in bone homeostasis, including alkaline phosphatase,
osteoprotegerin, and genes involved in in extracellular
matrix formation [82]. Vitamin K, through the preg-
nane x receptor (PXR), alters the expression of drug
metabolism-related genes MDR1 and CYP3A4 in the
intestine [83]. Emerging evidence suggests that vita-
min K may also act through a IncRNA-dependent path-
way. Growth arrest-specific gene 6 (GAS6), a vitamin
K-dependent protein, is negatively correlated with its
putative cis-antisense regulator, the IncRNA GAS6-
AS, in breast cancer [84]. There is an increase in GAS6
expression following intravenous injection of vitamin
K1 in non-warfarin treated patients[85]. Hence, vita-
min K may affect the expression of the IncRNA GAS6-
AS, a regulator of GAS6. Furthermore, coagulation
factor X (FX), another vitamin K-dependent protein,
may help recruit tumor-associated macrophages in
glioblastoma multiforme FX is regulated by the IncRNA
CASC2c and synergistically with miR-338-3p which
represses the expression of FX to promote M2 mac-
rophage polarization [86]. Deeper investigations of the
probable role of Vitamin K in IncRNA expression regu-
lation are warranted.

Functional link between water-soluble vitamins (B
AND C) and long non-coding RNAS

Vitamin B group

The vitamin B group plays key roles in a wide range of
cellular functions: metabolism, transport of nutrients,
and synthesis of red blood cells [87]. There are eight types
of vitamin B, each with unique functions: vitamin Bl
(Thiamine), B2 (Riboflavin), B3 (Niacin), B5 (Pantothenic
acid), B6 (Pyridoxal), B7 (Biotin), B9 (Folate), and B12
(Cobalamins). Each B vitamin is either a cofactor (gen-
erally a coenzyme) or a precursor of essential enzymes
for several metabolic pathways as well as for RNA and
DNA biosynthesis and DNA repair [87]. Mitochondrial
dysfunction, neurocognitive disorders, and immune dys-
function are associated with B vitamins deficiency. In
aging, B vitamins deficiency is also linked to osteoporo-
sis, and cardiovascular disorders [88].

Vitamin B metabolism-associated disorders in prenatal

and early childhood

Dietary deficiency of folate and B12 can lead to reduc-
tion of the insulin-like growth factor type-II receptor
(IGF2R) levels in the placenta and the hepatic tissue of
the fetus. Different dietary combinations of folic acid
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and B12 impact the epigenetic status of IGF2R and the
IncRNA KCNQI1OTT1 in placenta and fetus of C57BL/6
mice [89]. Folate-deficiency-induced changes in the
expression of IGF2R were associated with enhancement
of suppressive histone modifications. In addition, over-
supplementation with either folate or B12 enhanced the
expression of IGF2R and the IncRNA KCNQ1OT1 in
the placenta and fetal tissues, and notably, up-regula-
tion of KCNQ1OT1 exhibited a sex-biased pattern [89]
(Table 4). Maternal vitamin B12, B6, and homocysteine
levels impact offspring weight and DNA methylation at
four differentially methylated regions (DMRs) involved
in fetal growth and development during pregnancy [90].
These DMRs included the IncRNA maternally expressed
gene 3 (Meg3), known for its functions in embryonic
development [91], and H19, a IncRNA strongly expressed
during embryogenesis [92]. Vitamins B12 and B6 were
associated with 3-year weight gain. Moreover, maternal
B6 concentrations were positively associated with meth-
ylation at the MEG3 DMR, highlighting how nutrients
affect developmental epigenetics [90].

Cerebral palsy is a group of disorders that appear in
early childhood and affect movement and muscle tone
[99]. Hypoxia-induced and ischemic brain damage is
one of the main causes, while neuronal apoptosis is the
main mechanism of nerve injury in cerebral ischemia
[100]. Hydro-acupuncture (HA) injection of vitamin
B1 and B12 in a cerebral palsy rat model ameliorated
nerve injury, by affecting neuronal apoptosis via the
MALAT1/miR-1/BDNF axis and the downstream
PI3K/Akt pathway [93]. Vitamins Bl and B12 sup-
pressed neuronal apoptosis by upregulating BDNF
(brain-derived neurotrophic factor) [93], a promoter
of neuronal survival [101]. Furthermore, Oxygen Glu-
cose Deprivation/Reoxygenation (OGD/R) treatment
in neurons induced apoptosis, repressed the expression
of MALAT1 and BDNF as well as the phosphorylation
of PI3K and Akt, and enhanced miR-1 expression. All
these effects were reversed by vitamin B1 and B12 treat-
ment [93] (Table 4). Intriguingly, BDNF is regulated
by its endogenous cis-antisense IncRNA, BDNF-AS1
[102]. Hence, future work in this field should determine
whether BDNF-ASI is pertinent to the regulatory net-
works of the B vitamins. Finally, MALAT1 interference
abrogated the neuroprotective action of vitamin B1 and
B12. Taken together these results indicated that vita-
min B1 and B12 specifically act on the MALAT1- miR-1
interface [93]. Also in the context of neuronal disor-
ders, besides confirming the involvement of vitamin B
metabolism in Ang II-related cognitive impairment, the
target genes of certain differentially expressed IncRNAs
contribute to vitamin B group (lipoic acid, folate, and
vitamin B6) metabolism [94] (Table 4).
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Vitamin B metabolism-associated disorders in adulthood
Patients affected with pulmonary tuberculosis (TB)
exhibit abnormal concentrations of pyridoxal phosphate,
pyridoxamine phosphate (two forms of vitamin B6), and
folic acid [95]. This abnormal regulation of vitamin B
metabolism may result from mRNA-IncRNA-miRNA
network disruption due to the infection. Specifically, a
ceRNA regulatory network consisting of 23 IncRNAs,
10 miRNAs, and 113 mRNAs participates in vitamin B
metabolism regulation in TB patients. This integrated
analysis also showed that IncRNA OSBPL10-ASI,
miRNA hsa-miR-485-5p, and mRNA SLC23A2, along
with the three vitamin B metabolites, constitute an
integrative biomarker signature which reflects vitamin
metabolism deregulation in TB patients, and may serve
as promising blood biomarkers for an accurate diagnosis
of TB [95]. The relationship vitamin B and the IncRNA
MALAT1 is also correlated with the development of
human breast invasive ductal carcinoma (IDC) [96].
Pyridoxine 5’-phosphate oxidase (PNPO), a convert-
ing enzyme for the active form of vitamin B6, pyridoxal
5’-phosphate (PLP), is overexpressed in human ovar-
ian cancer, and PNPO suppression can inhibit prolifera-
tion, migration, invasion and colony formation of breast
cancer cells [96]. Besides, PNPO positively correlated
with MALAT1 in breast cancer cells, whereas MALAT1
was negatively correlated with miR-216b-5p, suggest-
ing a ceRNAs regulatory mechanism [96]. Therefore, the
MALAT1/miR-216b-5p/PNPO axis plays a key role in
IDC development, and may have the potential to be ther-
apeutically targeted [96] (Table 4). A riboswitch is a regu-
latory portion of a messenger RNA molecule, generally
located in the 5’ untranslated region, that binds a specific
cognate small-molecule ligand and ultimately regulates
the translation of the protein encoded by the mRNA [92].
Paradoxically, riboswitches may also regulate noncoding
RNAs [97]. A vitamin B12-regulated riboswitch in Lis-
teria monocytogenes regulates the expression of AspocR,
a cis-encoded antisense RNA (asRNA) transcribed from
the opposite strand of the locus encoding the transcrip-
tion factor pocR. PocR activates the expression of pdu
genes, implicated in propanediol catabolism, and vitamin
B12 is a cofactor of enzymes involved in this catabolic
process. Summarily, PocR and pdu genes are regulated by
B12 in bacteria [97] (Table 4). Evidence of functional rela-
tionships between vitamin B and long noncoding IncR-
NAs is summarized in Table 4.

Vitamin C

Vitamin C is a hydrophobic vitamin that most plants and
animals synthesize through a four-enzyme pathway from
D-glucose or D-galactose. However, due to the absence
of the gene encoding a key enzyme in this biosynthetic
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pathway, gulonolactone oxidase, which is present in most
non-primate mammals and beyond, humans need to
obtain vitamin C from dietary intake. Vitamin C serves as
an antioxidant to scavenge deleterious free radicals and
enzyme cofactors for many reactions involved in the bio-
synthesis of collagen, carnitine, and neurotransmitters,
coagulation factor V. It is absorbed through the intes-
tine, transported into the blood by Na-dependent vita-
min C transporters SVCT-1 and SVCT-2, and excreted
unchanged through urine. Vitamin C can modulate gene
expression [103].

Exogenous vitamin C has been shown to enhance pro-
liferation, inhibit apoptosis, and reduce the global nucleic
acid methylation levels of immature Sertoli cells. This
type of treatment has resulted in differential expression
of approximately 1000 IncRNAs with functions including
oxidoreductase activity, cell proliferation and apoptosis,
modulation of hormonal levels, modulation of catalytic
activity, developmental processes, ATP metabolism, and
reproductive processes [104]. Moreover, vitamin C has
been found to exert anti-cancer effects in colorectal can-
cer (CRC) cells related to the MALAT1 IncRNA [105].
Vitamin C can suppress proliferation of CRC cells, induce
apoptosis, and arrest cell cycle in the S phase, by down-
regulating MALAT1 [105]. Vitamin C treatment of donor
cells may enhance cloned bovine embryo development
through transcriptional regulation, including of IncRNAs
[106]. Also, during the reprogramming of female somatic
cells into induced pluripotent stem cells (iPSCs), vitamin
C keeps the IncRNA X-inactive specific transcript (Xist)
repressed, providing further evidence of the connection
between vitamin C and crucial regulatory IncRNAs in
stem cells and early development [107]. The link between
vitamin C and IncRNAs is summarized in Table 5.

Generally, although more data is needs to extrapolate
through which IncRNA-dependent regulatory axes vita-
min C might exert its role, molecular evidence prelimi-
narily confirms the IncRNA-dependent protective roles
of vitamin C.

Vitamin metabolism and digestion

Evidence is progressively pointing toward a link between
vitamin metabolism and IncRNAs (Table 6). For instance,
the IncRNA-mRNA network constructed in gastric
adenocarcinoma has shown the possible role of the
AC115619.1-APOA4/APOB and AP006216.2-APOA1/
APOA4 axes in the pathogenesis of this cancer through
regulation of fat digestion and absorption as well as vita-
min digestion and absorption [108].

RNA sequencing of hepatic cells of Hu sheep exposed
to heat stress has shown differential expression of 520
mRNAs and 22 IncRNAs. Notably, the differentially
expressed mRNAs have been associated with biological
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processes including vitamin digestion and absorption.
LNCO001782, as one of the differentially expressed IncR-
NAs, has been suggested to affect expression of APOA4
and APOAS5, thus regulating liver function [109].

Conclusions and future directions

Emerging evidence suggests that IncRNAs are impor-
tant components of regulatory networks through which
multiple key vitamins exert their roles. In contrast to
protein-coding genes, IncRNAs are generally not well-
conserved between closely-related species and lineages
in evolution [2, 110, 111] and in particular, most human
IncRNAs are not conserved beyond primates. There-
fore, results obtained from non-primate animal mod-
els should be translated into clinical applications with
caution. This necessitates design of appropriate experi-
mental systems to define the physiological functions
of IncRNAs, particularly human primary cell cultures,
organoids, and nonhuman-primate models. This field
can also benefit from human studies in people with rare
genetic deficiencies in certain vitamins, to the extent
that IncRNA functions underlie the corresponding
phenotypes. High-throughput RNA sequencing assays
before and after supplementation with these vitamins
can help to identify the vitamins’ regulated genes glob-
ally in an unbiased fashion. Moreover, the association
between vitamin deficiency and susceptibility to cer-
tain disorders can facilitate identification of the possi-
ble IncRNA/miRNA/mRNA targets of vitamins in each
such disease.

Cancer, developmental and neuropsychiatric disor-
ders were identified in our survey as “leitmotif” diseases
recurrently connected with a few specific IncRNAs at the
vitamin interface (see Tables 1 and 4). Among these IncR-
NAs, we spotted specific classical IncRNAs such as H19,
MEG3, MALAT1, HOTAIR, and SNORNA host genes
(SNHG6/16). They have been known in the field for dec-
ades and are its de facto “low-hanging fruit,” thanks to
their clear associations with multiple diseases through
diverse but well-understood mechanisms of action in the
literature.

One of the major findings of this review is the frequent
association of the H19 IncRNA with vitamin-driven
regulation in disease, spanning disorders from Ankylos-
ing Spondylitis to a range of cancers (Tables 2 and 4).
Presumably this is due to the centrality of H19-driven
downregulation of VDR, which is mechanistically well-
characterized. Pharmaceutical industry should, perhaps,
consider investing in developing an inhibitor of this
downregulation, because such a drug might have broad
relevance to restoring vitamin D function and treating
the wide range of diseases whose etiology depends, at
least in part, on H19-conferred vitamin D resistance.
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MEG3, another classical IncRNAs that has been
exhaustively studied in the past two decades,was mostly
seen as associated with colorectal cancer across multi-
ple vitamin-related studies. There is broad evidence, as
reviewed here, from independent groups supporting the
role of vitamin D-mediated pathways in the link between
MEGS3 and colorectal cancer.

MALATI1, one of the best-characterized IncRNAs
and one of the most highly expressed genes in humans,
was revealed by multiple groups to be relevant to breast
cancer as well as to coronary artery disease, specifically
as viewed through the prism of its interface with vita-
min-mediated pathways. Summarily, this review places
MEG3, MALAT]1, and H19 at this interface as frequent,
recurrently seen, and hence major IncRNA effectors of
the vitamin-to-disease connection. However, our review
also implies that unbiased whole-transcriptome stud-
ies of this connection, rather than studies centered on
already-known IncRNAs, should be more frequent as
they may identify additional IncRNAs uniquely relevant
to vitamin-dependent disease etiology.

HOTAIR, previously known mainly for its oncogenic
functions [112], is an IncRNA that more recently has
been implicated in the pathogenesis of diseases other
than cancer, including multiple sclerosis [47]. Surpris-
ingly, our literature survey has uncovered evidence, from
several groups, of HOTAIR’s relevance to multiple scle-
rosis pathogenesis linked to vitamin-dependent mecha-
nisms, and hence adds to the body of knowledge about
this IncRNA’s disease impacts, underscoring its protean
and multifunctional versatility.

SnoRNA host genes are notable because snoRNAs
essential to ribosome component biosynthesis in the
nucleolus may also act through poorly understood sys-
temic noncanonical pathways [113]. Here we establish
broad relevance of 2 snoRNA host genes, SNHG16 and
SNHGS6, to a variety of cancers and neuropsychiatric
disorders specifically through their relationship with
vitamins, well supported by multiple studies (Table 2).
The strength of this connection clearly indicates that
the role of snoRNA host genes and snoRNA biogenesis
and ribosomal as well as noncanonical functions should
all be subject to functional investigation within the spe-
cific context of vitamin D-driven regulation, given that
vitamin D is the sole vitamin associated with a bevy of
SNHG6/16-linked disease outcomes in humans and
animal models. The role of snoRNA in cancer is well-
established [114]. Interestingly, there are practically no
publications to date examining snoRNA host genes in
neurological and neuropsychiatric diseases. Hence it
is possible that our vitamin-centric review approach
has uncovered a novel set of snoRNA host gene action
modalities in those groups of diseases that, in contrast to
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the role of snoRNA in cancers, have not yet been subject
of much functional investigation.

Prior to our review, the firm relevance of these IncR-
NAs that we have listed above—as a group of “famous,
by-now-classical, IncRNAs” — to vitamin pathways was
not explicitly, and integratively, summarized across mul-
tiple studies. This review should motivate RNA biolo-
gists to even deeper investigate the already-well-known
molecular mechanisms of these IncRNAs in order to
understand how they serve as the regulators and/or the
targets of the vitamins that we discussed.

Our search revealed that vitamin D is the best-studied
vitamin showing association with IncRNA in various
disease contexts. In particular, the IncRNA-mediated
beneficial effect of vitamin D in treating neuropsychiat-
ric disorders was evident. The positive effect of vitamin
D supplementation for treatment in psychiatric illness is
well-supported too [115, 116]. The demonstrated regula-
tory axes in those studies provide well-defined molecular
evidence for the potential of a synergistic effect between
vitamin D and the drugs commonly prescribed for these
disorders. One implication for clinicians might be to con-
sider prescribing vitamin D supplementation in the early
stages of disease, or for neuropsychiatric disorders with
a clearly defined genetic component for family members
at risk. 1,25(0OH),D; can induce the differentiation of
acute myeloid leukemia cell lines to more mature mono-
cytic cells [117] Hence, further research to consider the
effectiveness of co-use of existing drugs and vitamin D
derivatives in IncRNA-dependent pathways defined in a
particular disease context could be a worthwhile area of
research. Because the IncRNAs in these networks may
serve as both biomarkers and drug targets, more effective
“theranostic” approaches might be envisioned.

Vitamin D can act through both canonical and non-
classical pathways with its faithful classical partner
VDR, or non-VDR dependent pathways (Fig. 3) [118].
On the other hand, VDR may have an anti-apoptotic
function independent of 1,25(OH),D; [119]. Compre-
hensive insights about different modes of vitamin D
actions are summarized in an in-depth review [118].
The IncRNA H19 has opposite functions in different
vitamin D-regulated contexts, perhaps because of its
involvement in VDR-dependent as well as noncanoni-
cal pathways. Two H19-dependent regulatory axes
together affect the expression of VDR and increase
the inflammatory response in Ankylosing Spondyli-
tis (AS). The H19-miR675-5p-VDR pathway increases
VDR expression level in AS, but in ulcerative coli-
tis, H19 overexpression decreased VDR expression
through the same pathway [120]. One possible expla-
nation might be related to the non-genomic actions of
vitamin D / VDR that obscure the extent to which a
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particular regulatory axis might contribute to the final
output in various disease contexts vitamin D affects
the inflammatory response through nonclassical path-
ways. Future studies should dissect both the classical
and non-classical roles of vitamin D / VDR to avoid
such research bias.

One of the applied challenges, especially for the fat-
soluble vitamins, is defining adequate dosing for opti-
mal health while avoiding side effects. Rational therapy
design based on molecular understanding of regulatory
pathways may pave the way for individualized prescrip-
tions and doses of vitamins according to the individual
patients’ circulating biomarker IncRNA expression pro-
files. The advent of such individualized prescriptions
in the pharmaceutical market would help to capture
the post-genomic promise of true precision medicine
based on patient-specific transcriptome quantification.
Mechanistically, several IncRNAs that participate in
regulatory networks with vitamins may serve as molec-
ular sponges for miRNAs, consistent with the ceRNA
model. Therefore, deciphering the functional network
connecting IncRNAs and miRNAs may help in under-
standing the mechanisms of IncRNA-mediated regu-
lation of vitamin-related signaling pathways. Recent
studies have highlighted the impact of vitamin-related
signaling pathways in a wide array of human disorders,
including cancers, neuropsychiatric conditions, and
congenital malformations. Therefore, IncRNAs directly
contributing to the etiology of these disorders through
known pathways should be considered as putative ther-
apeutic targets. Further functional investigations in this
field will further elucidate the molecular mechanisms at
play and hence are expected to facilitate the design of
novel IncRNA-based therapies for these disorders.
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