Comitato et al. Genes & Nutrition (2016) 11:32
DOI 10.1186/512263-016-0543-1

Genes & Nutrition

RESEARCH Open Access

Tocotrienols induce endoplasmic reticulum @
stress and apoptosis in cervical cancer cells

Raffaella Comitato', Barbara Guantario', Guido Leoni?, Kalanithi Nesaretnam?, Maria Beatrice Ronci',

Raffaella Canali’ and Fabio Virgili'

Abstract

apoptosis.

Background: We have previously reported that y- and &-tocotrienols (y- and 6-T3) induce gene expression and
apoptosis in human breast cancer cells (MDA-MB-231 and MCF-7). This effect is mediated, at least in part, by a
specific binding and activation of the estrogen receptor-g (ERB). Transcriptomic data obtained within our previous
studies, interrogated by different bioinformatic tools, suggested the existence of an alternative pathway, activated
by specific T3 forms and leading to apoptosis, also in tumor cells not expressing ER. In order to confirm this
hypothesis, we conducted a study in Hela cells, a line of human cervical cancer cells void of any canonical ER form.

Results: Cells were synchronized by starvation and treated either with a T3-rich fraction from palm oil (10-20 pg/
ml) or with purified a-, y-, and &-T3 (5-20 ug/ml). a-tocopherol (TOC) was utilized as a negative control. Apoptosis,
accompanied by a significant expression of caspase 8, caspase 10, and caspase 12 was observed at 12 h from
treatments. The interrogation of data obtained from transcriptomic platforms (NuGO Affymetrix Human Genechip
NuGO_Hs1a520180), further confirmed by RT-PCR, suggested that the administration of y- and &-T3 associates with
Ca’* release. Data interrogation were confirmed in living cells; in fact, Ca-dependent signals were observed
followed by the expression and activation of IRE-1a and of other molecules involved in the unfolded protein
response, the core pathway coping with endoplasmic reticulum stress in eukaryotic cells, finally leading to

Conclusions: Our study demonstrates that y- and 6-T3 induce apoptosis also in tumor cells lacking of ERB by
triggering signals originating from endoplasmic reticulum stress. Our observations suggest that tocotrienols could
have a significant role in tumor cell physiology and a possible therapeutic potential.
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Background

The chemical structure of tocotrienols (T3) is very similar
to that of tocopherols (TOC), only differing in the unsat-
uration of the phytyl chain. On the basis of a modest in-
hibitory effect in a fetal resorption test in rats, T3 are
frequently pooled together with TOC within the family of
“vitamin E,” but a wide spectrum of specific biological ac-
tivities has also been reported that is not exhibited by
TOC [27]. For instance, several studies have demonstrated
that T3, especially the y- and 8-T3 isoforms, have inflam-
matory and antioxidant activities not shared with TOC
and in particular with a-TOC [26, 54, 57]. Moreover,
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evidences exist indicating that each vitamin E isomer has
a specific pharmaco-dynamic profile [3, 6].

In a study based on a transcriptomic (complementary
DNA (cDNA) array) approach, we have previously
reported that a T3-rich fraction (TRF) extracted from
palm oil induces a significant inhibition of cell prolifera-
tion both in vitro in cultured breast cancer cells [40, 41]
and in vivo in tumors caused by the inoculation of
human breast cancer cells in athymic mice [40]. More
recently, on the basis of a subsequent set of studies in
silico, followed by in vitro binding experiments coupled
with cell culture studies, we have demonstrated that the
effects of specific T3 (y- and §8-T3 forms) on gene
expression are, at least in part, mediated by the binding
to estrogen receptor-p (ERP) in cultured MDA-MB-231
[16] and MCEF-7 cells [15]. The transcriptomic data set
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obtained within these studies, further interrogated by
means of bioinformatic tools, suggested the existence of an
alternative pathway, activated by specific T3 forms, leading
to apoptosis also in tumor cells not expressing any of the
two canonical forms of ER (ERa and ERP). Data interroga-
tion suggested the hypothesis that this alternative pathway
could be mainly ascribable to the induction of a cellular
stress, at the level of the endoplasmic reticulum (EndoR).

We have therefore extended our previous investigation
exploring a putative pathway activated at the level of
EndoR by specific T3 forms. To this aim, HeLa cells, a
cell line not expressing any of the canonical forms of
ER, were selected as the experimental model. This paper
reports the activation of EndoR stress and Ca-dependent
gene expression following the administration of T3,
leading to apoptosis, independently of the presence of
estrogen receptors.

Results
TRF and T3 induce apoptosis in Hela cells
As mentioned in the “Background” section, the interro-
gation of transcriptomic data collected in our previous
investigations [15, 16], further corroborated by recent in-
dication that appeared in the literature [61], suggested
the presence of a pro-apoptotic effect of T3, independ-
ent on ERP signaling. Therefore, HeLa cells, void of
these receptors, were utilized to verify the hypothesis of
a pro-apoptotic effect of T3 in the absence of ER.

First of all, we assessed if T3 and TRF could induce cell
death also in tumor cells not expressing ERs. Figure 1
shows that at 48 h from TRF and y- and &-T3
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Fig. 1 T3-induced apoptosis in Hela cells. TRF, y-, and 6-T3 (10 pg/ml)
induce apoptosis in Hela cells as indicated by an evident DNA
laddering at 48 h from treatment
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administration, cells display DNA laddering followed by
cellular death by apoptosis (morphology not shown) in
HeLa cells. Noteworthy, the apoptotic effect of T3 in
HeLa cells was detectable 24 h later with respect to what
we observed in our previous experiments in MCF-7 cells
[15], this time shift suggesting the presence of a distinct
pathway modulated by T3. The presence of a-TOC and «-
T3 were not associated with any detectable DNA
laddering.

Identification and characterization of alternative
pathways affected by T3 in Hela cells

On the basis of this initial observation, we characterized
the changes of transcriptome expression of HeLa cells asso-
ciated with 24 h of T3 treatment by a microarray approach.

The profiles of differentially expressed genes obtained
by microarrays were further subjected to functional
analysis with the aim of characterizing biological
processes and cellular components annotated in GO and
modulated by T3.

Finally, by clustering “semantic” similarities [4, 30] be-
tween enriched GO terms, we compared the transcriptomic
phenotype observed in HeLa with that previously observed
in our laboratories on MCF-7 cells treated with T3 [15].

Microarray analysis indicated that the treatment with
10 pg/ml y-T3 and 8-T3 is associated with a higher num-
ber of modulated genes (177 genes and 147 genes,
respectively) than that observed following a-T3 treatment
(21 genes) (see Fig. 2 and Additional file 1: Table S1).

Out of 13 genes significantly modulated by all T3, 8
genes have been described to be specifically involved in
sterol and steroid metabolism (DHCR24, FADS?2,
FDFT]1, IDI1, INSIG1, LDLR, SCD, SREBF1) and 5 genes
(KLF7, LPIN1, FADS2, MMAB and MYO6) have been
reported to play a role in different aspects of cellular
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Fig. 2 Venn diagram reporting the number of differentially
expressed genes observed after treatment of Hela cells with T3.
Differentially expressed genes were identified by LIMMA analysis
according to a fold-change threshold (treatment vs control) of at
least +0.5 and a p value threshold above 0.05
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metabolism. More specifically, KLF7 is involved into regu-
lation of adiponectin expression in mouse embryonic
fibroblast [12], LPIN1 and FADS2 are involved in the con-
trol of fatty acid metabolism at different levels [28, 58],
and MYO6 mediates endocytosis within intracellular
organelles [23].

In order to identify ERB-independent pathways of
apoptosis  activation, we compared y-T3-related
changes in gene expression profiles, previously ob-
served in MCF-7 with those obtained in HeLa. Figure 3
shows that the effect of T3 treatment only partially
overlaps in the two cell lines. In fact, in both cell lines,
we observed a significant modulation of isoprenoid me-
tabolism and sterol and steroid biosynthetic processes.
In HeLa cells, we also observed an enrichment of bio-
logical processes related to the regulation of the cell
cycle, hexose, and carboxylic acid metabolism. Simi-
larly, we observed an enrichment of the biological pro-
cesses related to the regulation of apoptosis, cytokines
biosynthesis, and glutathione metabolism associated
with the profiles of genes differentially expressed in
MCE-7. Several evidences indicated that these pro-
cesses have a role in regulating a common phenotype
related to cellular death [7, 13].
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Conversely, the profile of differentially expressed genes
in HeLa cells specifically involved processes related to
tissue development and regulation of transcription, sug-
gesting the activation of specific molecular mechanisms
distinct from those activated in MCE-7.

A similar functional analysis was performed to identify
cellular compartments annotated in GO and mainly
enriched by the profiles resulting from gene modulation
affected by T3 treatment.

In HeLa, the treatment with y-T3 was mainly associated
with the modulation of gene products located within
intracellular organelles and in particular at the level of the
EndoR. The same cellular compartment was identified as
a target also in our previous experiments only focusing on
MCE-7 cells (Additional file 2: Figure S1). However, in
MCE-7, y-T3 treatment mainly resulted in the modulation
of profiles related to mitochondria and Golgi apparatus.

In both MCF-7 and HeLa cells, y-T3 treatment induced
a significant modulation of sterol and steroid biosynthetic
processes and of processes related to isoprenoid
metabolism.

In order to investigate the relationship between “death-
committed” phenotype and the involvement of EndoR
identified by the analysis of GO cellular compartment
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Fig. 3 Clustering analysis of biological processes modulated by T3 treatment. Biological processes enriched by differentially expressed genes in
Hela (24 h) and MCF-7 (24 h) cells treated with T3 are represented in the plot with black blocks. The matrix of semantic similarities between each
pair of significantly enriched biological processes was estimated by Resnik measure. Hierarchical cluster analysis was performed on the obtained
matrix. The optimal cluster division was estimated by the analysis of silhouette scores. Each cluster is represented by different colors in
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enrichment, we performed a more specific analysis, to fur-
ther characterize the gene expression profile induced by
T3 treatments and specifically related to EndoR stress.
Utilizing a data-mining approach, we built a list of 568
genes, for which evidences exist in the literature that in-
dicate an involvement in EndoR stress. This list was uti-
lized to map the profiles of differentially expressed genes
observed in HeLa experiments. This approach suggests
that y-T3 and &8-T3 have a stronger ability to modulate
the expression of genes related to EndoR stress with
respect to o-T3. Only three genes related to EndoR
stress were downregulated by all T3 (SREBF1, SCD,
LPIN1). Both y-T3 and 8-T3 downregulated three genes
(SREBF2, CDKNI1A, ID2) and upregulated four genes
(HSPA5, ASNS, PHLDA1, GDF15). y-T3 specifically
upregulated seven genes (CCND1, CHACI1, DNAJBY,
FAS, GEM, GFPT1, XBP-1), whereas 5-T3 downregulated
three genes (GSK3B, DNAJC10, JUN) and upregulated
four genes (SDF2L1, BCR, TRIB3, FAMI129A). Note-
worthy, several genes belonging to this group are estab-
lished markers of EndoR stress (ASNS, CDKN1A, FAS,
XBP-1, SDF2L1, TRIB3, HSPA5) [2, 19, 24, 29, 36, 63].

T3-induced Ca** release in EndoR
T3-induced changes in gene expression profile that were
obtained by microarray experiments, eventually confirmed
by RT-PCR (data not shown), suggested the presence of
EndoR stress upstream to the apoptosis induced by T3.
We therefore tested the occurrence of one of the first,
more evident signals associated with EndoR stress: the
intracellular Ca®* release from the endoplasmic reticulum.
Figure 4 shows that a-T3, y-T3, and §-T3, but not
TREF, induced a marked and significant Ca* release from
the endoplasmic reticulum to the cytoplasm, confirming
the involvement of EndoR stress in T3-induced apop-
tosis. It is interesting to note that «-TOC had no
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Fig. 4 T3-induced Ca’" release in the cytosol. Quantitation of Ca®*
release by Fluo-4 NW Calcium Assay. Hela cells were incubated in
the presence of a-TOC, a-T3, y-T3 or &-T3, and TRF (10 ug/ml) for
15 min. As the positive control, cells were treated with 50 uM
carbachol. CC indicates treatment with the vehicle only (DMSO)
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significant effect on Ca®" release, further indicating that
the observed effects are definitively structure-specific.

Characterization of T3-induced EndoR stress

X-box binding protein-1 (XBP-1) and C/EBP homology
protein (CHOP) are two of the major players involved in
EndoR stress response. At 24 h from the administration
of y-T3 (20 pg/ml) and 8-T3 (10 pg/ml), we observed an
increased expression of total XBP-1. Conversely, CHOP
messenger RNA (mRNA) expression only increased in
association with the treatment with the highest (20 pg/
ml) concentration of y-T3 (Fig. 5a, b). In agreement with
the absence of effect on Ca®* release, the treatment with
a-TOC and TRF did not induce any significant changes
of XBP-1 and CHOP expression (data not shown).

The proteolitic digestion with Pstl restriction enzyme
allows to discriminate between the unspliced and spliced
forms of XBP-1. In fact, the splicing of this mRNA is
associated with the loss of Pstl “cutting” site within
XBP-1-mRNA. Therefore, after Pstl digestion, the
unspliced form is visualized as two separate bands (at
291 and 307 kD), while the spliced form is visualized as
one band only (at 572 kD), typical of EndoR stress.
Figure 5c¢ shows that TRF (10 and 20 pg/ml), y-T3 (5, 10,
and 20 pg/ml), and 8-T3 (5 pg/ml) induced the alternative
splicing of XBP-1 (sXBP-1).

Also in this case, a-TOC had a different effect, only
inducing the expression of the unspliced form, uXBP-1.
Therefore, according to the notion that XBP-1 alterna-
tive splicing is mediated by inositol requiring enzyme-1la
(IRE-1a), we hypothesized that y- and 6-T3 treatment
indirectly modulates IRE-1a activity.

The treatment with tocotrienols did not induce PERK
phosphorylation and ATF-6 cleavage but only activate the
IRE-1a pathway

At least three different molecular pathways have been
reported to be affected by EndoR stress [5]. Therefore,
together with the expression of IRE-1a, we investigated
the expression of protein kinase RNA (PKR)-like ER
kinase (PERK) and of the activating transcription factor-
6 (ATF-6). To this aim, we selected the concentrations
of a-, y-, and &8-T3 that were associated with a more
evident effect on gene expression. As positive control for
EndoR stress induction, HeLa cells were treated with
5 pg/ml tunicamycin (TM).

Figure 6a (and Additional file 3: Figure S2) shows that
any of T3 (10 pg/ml) induced either ATF-6 proteolytic
cleavage or PERK phosphorylation at 24 h and at longer
incubation times (not shown). To better characterize the
effect of T3 on the IRE-1a phosphorylation, we performed
a time-course observation in HeLa cells incubated with
10 pg/ml of a-, 8-, and y-T3 and TRF at different time
points (24, 26, 28, and 30 h). At 26 h incubation, only §-T3
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Fig. 5 y-T3- and 6-T3-induced expression of EndoR stress genes after 24 h of treatment. a Effect of y- and 6-T3 and a-T3 on XBP-1-mRNA
expression. y-T3 (20 pug/ml) and &-T3 (10 pug/ml) induce significant mRNA expression of XBP-1. b Effect of y- and 6-T3 and a-T3 on chop-mRNA
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(5-20 pg/ml), but not o-TOC (5 pg/ml), induce the alternative splicing of XBP-1. Details about the Pst1 digestion are provided in the “Methods”
section. Tunicamycin (TM) was used as a positive control of EndoR stress induction. Asterisks indicate significant differences (p value <0.05)
between treated cells vs control (CC)
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Fig. 6 Effects of TRF and purified T3 on PERK, ATF-6, and IRE-1a activity. T3 (10 ug/ml) affect the UPR intracellular pathway in Hela cells. CC
indicates the treatment with the vehicle only (DMSO). Brefeldin (BFA) (2.5 ug/ml) was used as a positive control of EndoR stress. a-Tubulin was
used as the loading control. a T3 treatment has no effect on the expression of ATF-6 and PERK proteins at 24 h from the treatment. b IRE-1
protein expression and phosphorylation are significantly affected by T3 treatment. The figure shows one representative experiment out of at
least three separate experiments. Densitometry and statistical analysis is showed as Additional file 3: Figure S2 )
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treatment was associated with a shift of the electrophoretic
mobility of IRE-1a (Fig. 6b and Additional file 3: Figure S2)
in comparison to control (lane cc), indicating the occur-
rence of protein phosphorylation and, therefore, the activa-
tion of this pathway. In addition, longer exposures to 5-T3
(28 and 30 h) were associated with IRE-1a phosphorylation,
indicating the presence of a long-term maintenance of pro-
tein activation only upon the treatment with §-T3.

Effects of TRF and purified T3 on caspase activity

It is known that one of the outcomes of EndoR stress is the
activation of apoptosis [11]. Twelve hours after the admin-
istration of y-T3 or TRF (10 pg/ml), we detected a signifi-
cant increase of caspase-12 and caspase-8 activity (Fig. 7b,
d). Moreover, §-T3 treatment (10 pg/ml) induced a modest
but significant increase of caspase-12 activity. On the con-
trary, caspase-10 activity was insensitive to all the different
treatments (Fig. 7c). Finally, we observed caspase-9 cleavage
only in association with 8-T3 administration (Fig. 7a).

Effects of PBA on GRP78 protein expression and caspase-
12 activity

Glucose-regulated protein 78 (GRP78) is a natural mo-
lecular chaperone. It is expressed as a response to
EndoR stress, and it is involved in protein folding, prote-
asome degradation, EndoR Ca** binding, and also in the
control and activation of transmembrane EndoR stress
sensors. GRP78 is therefore one of the major upstream
regulators of ER protein folding, directly involved in the
activation of ATF-6, IRE-1, and PERK.
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In order to assess the real involvement of EndoR stress
in the apoptosis induced by T3, we measured the GRP78
protein level in the presence of a chemical chaperone,
sodium 4-phenylbutyrate (4-PBA), that stabilizes protein
structure improving cellular folding capacity, therefore
reducing EndoR stress.

Firstly, we performed a dose-response curve to evaluate
the appropriate 4-PBA concentration. HeLa cells were
incubated with different concentrations of 4-PBA (5, 8,
10 mM) with or without TM for 4 h. Then, we utilized the
lowest 4-PBA concentration (5 mM) not associated with
toxic effect on HeLa proliferation (data not shown).

HeLa cells were treated with T3 and TRF (10 pg/ml)
and co-incubated with or without 4-PBA (5 mM) for
24 h. Figure 8a shows that the treatment with §- and y-
T3, and TRF is associated with an increase of GRP78
protein level. 8-T3 had a more remarkable effect in
comparison with other T3 forms and TRF. 4-PBA
significantly reduced GRP78 increase induced by 6-T3
and TRF treatment.

Finally, we assessed the effect of T3 on caspase-12
activity, which is the final effector of EndoR stress-
induced apoptosis. Figure 8b shows that, after 24 h, co-
incubation with 4-PBA significantly reduced the activity
of caspase-12 with respect to y- and §-T3 treatment.

XBP-1 activation in MCF-7 breast cancer cells not express-
ing ERB

To further confirm that T3-induced XBP-1 alternative
splicing was independent of the presence of ERP, we
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repeated the experiment on a specific clone of MCF-7
breast cancer cells not expressing ERp [8].

Similar to HeLa, the administration of y-T3 (20 pg/ml)
and 6-T3 (10 pg/ml) to a clone of MCF-7 cells not
expressing ERP induced the alternative splicing of XBP-1
(sXBP-1). Also in this case, a-T3 induced only the
expression of the unspliced form, uXBP-1.

Discussion

Several studies have shown that T3 inhibit cell prolifera-
tion and induce apoptosis in human and murine breast
cancer cells [22, 34, 43, 55] and in many other types of
tumor cells [17, 52, 59]. More recently, the beneficial
effects of T3 on different human disorders have been
evaluated in clinical trials [1, 33, 42, 45]. Within this
context, few studies have definitively addressed the
molecular mechanisms underlying T3 activity. We have
previously demonstrated a novel molecular mechanism
involving the interaction of y- and &8-T3 with estrogen
receptor-p [15, 16]. In these studies, we reported that
the activated complex ERPB/T3 translocates into the
nucleus to modulate the expression of specific genes
related to the apoptotic response and containing ERE in

their promoters. However, as mentioned above, the
antiproliferative activity of T3 has also been observed in
several other cell types, including melanoma, prostate
cancer and lung and liver carcinoma, and in particular
in HeLa [61], a cell type known to be void of any form
of canonical ERs. Therefore, we considered the possibil-
ity of an alternative pathway for the modulation of
apoptotic response, independent of ER activity.

We conducted a set of preliminary experiments, show-
ing that T3 modulate the expression of a pro-apoptotic
gene, containing ERE sequences, also in HeLa cells,
where this expression is obviously not driven by the acti-
vation of ERs. In particular, we observed a significant
increase of MIC-1 and cathepsin D expression in re-
sponse to the administration of y- and §-T3 (data not
shown). Starting from this background, we planned and
carried out a first “problem-driven” protocol, utilizing a
transcriptomic approach to identify the profile of differ-
ential gene expression associated with T3 treatment in
HeLa cells. A “data-mining process” identified a signifi-
cant modulation of several genes involved in EndoR
stress following the treatment with y- and 6-T3. Accord-
ing to the similarity between the biological processes
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enriched in HeLa and MCEF-7 following the administra-
tion of T3, we focused our attention on their role in
activating EndoR stress, a pathway identified in both
MCE-7 and HelLa (see Fig. 3).

A wide spectrum of genes related to EndoR was
significantly affected by T3. Among them, we observed a
downregulation of SCD expression that has been
reported to be associated with an increase of EndoR
stress in response to palmitate and to apoptosis in pan-
creatic B-cells [21]. Similarly, we observed a downregula-
tion of the LPIN gene, already reported to be induced by
EndoR stress ([37]) and a downregulation of SREBF1
and SREBF2 by y-T3 and 8-T3. The expression of these
genes, in particular SREBF2, is activated within the
unfolded protein response (UPR) pathway to cope with
EndoR stress [14]. We could therefore conclude that
both y-T3 and 8-T3 affect the ability of UPR to react to
stress stimuli. The molecular specificity of this effect is
quite high, as several transcription factors related to
EndoR stress are modulated by y- and §-T3, but not by
a-T3. Interestingly, after 6-T3 and y-T3 treatment, we
also observed the upregulation of HSPA5 (or GRP78), a
molecular chaperone that promotes protein folding and
inhibits protein aggregation in the EndoR [35].

On the basis of the results obtained by microarray, we
concluded that specific T3 forms induce apoptosis in
HeLa cells via EndoR stress. The precise reason why
specific isomers are more effective than others and the
molecular mechanisms underlying these distinct effects
are still scarcely understood.

EndoR stress has already been identified as one of the
major pathways involved in the initiation of apoptosis,
and it is known that EndoR stress-induced apoptosis is
strictly associated with Ca** release in cytoplasm [50]. In
fact, EndoR acts as an intracellular store and retains Ca>
* at a concentration thousands of times higher than
those present in the cytosol. Ca®* disposal is modulated
by EndoR-located Ca>* channels that, in the presence of
EndoR stress, release Ca>* from the lumen to activate
specific Ca**-depending signals and, eventually, apop-
tosis [49]. In the present study, we observed Ca?* release
to the cytoplasm of HeLa cells immediately (15 min)
after T3 treatment (Fig. 4). This observation led our
focus on the three major molecular pathways that
characterize EndoR stress.

As mentioned, at least three different transmembrane
proteins are involved in EndoR stress, namely the
following: PERK, ATF-6, and IRE-1 [49]. These proteins
remain inactive and bound to glucose-regulated proteins
(GRPs) and, in particular, to GRP78 also known as “im-
munoglobulin heavy chain-binding protein” (BiP) or
HSPAS5, a chaperone member of the heat-shock protein-
70 (HSP70) family that plays an important role in regu-
lating the UPR pathway. Under condition of EndoR
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homeostasis, GRP78 remains in its inactive form and
constitutively binds to three UPR transmembrane
sensors, ATF-6, PERK, and IRE-1 [51]. Following EndoR
stress, the complex BiP/EndoR protein is dissociated,
released from UPR sensors and activated [11].

As shown in Fig. 6, treatment with T3 (y-T3, §-T3,
and TRF) did not induce a differential expression of pro-
teins PERK and ATF-6, while the expression of IRE-1a
phosphorylation was significantly modulated. In fact, at
24 h from T3 treatment, IRE-1la phosphorylation was
faintly detectable, while the splicing of XBP-1 pre-
mRNA, a downstream step to IRE-1 activity, was evident
and detectable (Fig. 5c) both at shorter and longer
exposure times (12 and 48 h, data not shown). We
confirmed that the pathway leading to the expression of
a spliced form of XBP-1, induced by y- and 6-T3, is not
cell-specific and ERB-dependent by utilizing a specific
clone of MCF-7 that has been reported to be void of
ERp [8]. Similarly, to HeLa cells, the administration of y-
and 8-T3, but not «a-T3, to this cell line was associated
with the expression of a truncated form of XBP-1 (see
Fig. 9). The apparent discrepancy between IRE-la
phosphorylation and XBP-1 splicing at 24 h from T3
treatment could be explained by the lesser sensitivity of
western blot methodology in comparison with PCR assay.

We observed an evident variability of IRE-1 phosphor-
ylation suggesting that, in our experimental conditions,
this protein is likely to oscillate between two different
states, either “active” or “refractive” while maintaining its
endoribonuclease activity. This interpretation is sup-
ported by a study published by Li and coworkers [31]

XBP1

CC a-T3 y-T3 8-T3 TM BFA

Fig. 9 XBP-1 activation in a ER silenced clone of breast cancer cells
(MCF-7). A specific clone of MCF-7 cells, not expressing ERB, was
incubated with 6-T3 (20 pg/ml), y-T3 (10 pug/ml), a-TOC, and a-T3
(20 pg/ml). Details about Pst1 digestion are provided in the
“Methods"” section. CC indicates treatment with the vehicle only
(DMSO). Brefeldin (BFA) was used as a positive control of EndoR
stress induction. The figure shows one representative experiment
out of at least three separate experiments
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that described a three-state model for the activation of
mammalian IRE-la: (i) an inactive state that can be
“switched on” by EndoR stress; (ii) an active state
characterized by IRE-la oligomerization and XBP-1
splicing; and (iii) a refractive state in which IRE-la
enters after a prolonged activation, no longer responding
to an “unresolved” EndoR stress. The same authors
reported that different IRE-1a forms are not necessarily
recognized by the anti-p-IRE-a antibody and suggested
that de-phosphorylation has an important role for the
entering into the refractive state. Other authors [25]
demonstrated that, upon persistent EndoR stress (e.g.,
inositol depletion), IRE-1 is weakly but continuously
activated in a non-clustered form through its association
with BiP. The same study reports that the weak activity
of IRE-1a might act as an indispensable “fine tuning” for
cell adaption to chronic EndoR stress conditions. When
homeostasis is not recovered, UPR signaling induces cell
death by apoptosis.

Besides affecting IRE-1, we observed that treatment
with T3 is associated with a significant modulation of
XBP-1 and CHOP mRNA expression, starting at 24 h
from administration (Fig. 5a, b).

Overall, our data indicate that specific forms of T3 are
able to induce EndoR stress in HeLa cells through the
activation of IRE-la (fluctuating between active/refract-
ive forms), which in turn mediates the alternative spli-
cing of XBP-1 mRNA, and modulates CHOP
transcription. A prolonged EndoR stress leads to an in-
crease of CHOP expression that switches EndoR stress
signaling from “pro-survival” to “pro-apoptosis” [56, 62].
We confirmed our hypothesis utilizing the EndoR stress
inhibitor, 4-PBA. In fact, co-treatment with 4-PBA sig-
nificantly reduced both GRP78 protein levels and cas-
pase activity induced by y- and §-T3.

Finally, if cells undergoing EndoR stress do not suc-
ceed in restoring cellular homeostasis and degrade pro-
tein aggregates, UPR leads to cell cycle arrest and,
subsequently, to apoptosis [48]. In other words, in our
experimental conditions, T3 treatment “forced” HeLa
cells toward apoptosis.

Accordingly, we have shown that specific forms of T3
activate caspase-12 and caspase-8 expression (see Fig. 7).
Although T3 treatment has already been reported to ac-
tivate EndoR stress [44, 60], no studies had previously
addressed the role of these molecules in inducing
EndoR-mediated apoptosis in a model different from
breast cancer. It is interesting to note that caspase-12,
an EndoR resident caspase, is specifically cleaved and
activated during EndoR stress, but not following the ac-
tivation of death receptors and other mitochondria-
related apoptotic signals. Ca>* efflux from EndoR during
stress activates calpain that, in turn, activates EndoR-
caspase-12 [39]. Once activated, caspase-12 can trigger
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the maturation cascade finally leading to the activation
of caspase-3 to complete the apoptotic program [38]. In
HeLa cells, we observed the activation of caspase-12
both following y- and 8-T3 treatment, but only the latter
was associated with caspase-9 cleavage (Fig. 7). Even
though we could not observe any direct evidence of IRE-
la phosphorylation associated with y-T3 treatment, the
presence of evident downstream consequences to its ac-
tivation lets us hypothesize that, at least in HeLa cells,
also y-T3 is involved in the UPR pathway.

In our study, we also observed a significant activation
of caspase-8, even though this protease is known to play
a role in death receptor-mediated apoptosis [47]. There-
fore, we cannot exclude a possible involvement of a
death receptor-related pathway within the spectrum of
T3 activities.

Our data provide ground to speculate about the pres-
ence of a putative (orphan) receptor, possibly located at
the level of the cellular membrane able to bind T3 and
other estrogen mimetics such as ICI-182,730. This mech-
anism could be active in several cell types, independently
of the presence of functional ERs. In fact, previous (un-
published) observations from our group have unexpect-
edly indicated that, also in HeLa, the treatment with the
specific ER inhibitor ICI-182,780 weakens the effects of
T3 on MIC-1 gene expression (Additional file 4: Figure
S3). This evidence allows us to speculate that a hypothet-
ical “specific” (orphan) receptor characterized by a pocket
able to also bind ICI-182,780 (see Fig. 10) exists, also able
to bind y- and 8-T3. According to the chemo-physical
characteristics of T3, the candidate downstream target(s)
of the activity of this receptor could reasonably be located
at the level of EndoR. The activation of this hypothetical
(orphan) receptor would sequentially trigger EndoR stress,
IRE-1 activation, and XBP-1 splicing. Once synthesized,
sXBP-1 would modulate the expression of a specific set of
genes, inducing apoptosis.

Conclusions

Our study demonstrates that y- and 8-T3 activate a
series of specific cellular responses leading to apoptosis
also in cells lacking of ERB. We have identified and char-
acterized an EndoR stress-dependent pathway activated
by y- and &-T3 that is likely to cooperate with ERP
(when present)-dependent signaling in triggering apop-
tosis in several tumor cell types. Further future studies
must address the molecular mechanism by which y- and
8-T3 induce EndoR stress.

Methods
Chemicals
TRF was obtained from Golden Hope Plantation
(Malaysia) and purified as previously described [53]. T3
and a-TOC constituted more than 95% of the final TRF
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1C1 182,780
a andy-5 T3 b IC1 182,780
andy-3 T3
I Putative

Fig. 10 a In tumor cells expressing ERB (MDA-MB-231, MCF-7), y- and &-T3 bind to and activate the ERB receptor, inducing the expression of
pro-apoptotic genes such as MIC-1, EGR-1, and cathepsin-D, finally triggering apoptosis. More details about this mechanism are described in (6).
Also in these cell types, a contribution by pro-apoptotic signals originating from EndoR is not to be excluded. b In tumor cells not expressing any
of the canonical forms of ERs (ERa and ERB), y- and &-T3 induce EndoR stress activating Ca’* release in the cytoplasm. Overall, the treatment with
specific forms of T3, but not a-TOC, is associated with specific Ca-dependent signals involved in the unfolded protein response (UPR), the core
pathway to cope with EndoR stress in eukaryotic cells. In particular, Ca®* release is followed by the activation of IRE-1, which in turn activates
XBP-1 splicing, the binding of this latter to DNA, and the subsequent induction of the expression of pro-apoptotic genes. The expression of other
genes associated with EndoR stress (PERK and ATF-6) is not significantly affected by T3. Our data also provide ground to speculate about the
presence of a putative (orphan) receptor, possibly located at the level of the cellular membrane able to bind T3 and other estrogen mimetics
such as ICI-182,730. This mechanism could be active in several cell types, independently of the presence of functional ERs

composition, the remaining being minor components
(carotenoids, flavonoids). TRF typically contained 32%
a-TOC, 25% o-T3, 29% y-T3, and 14% 5-T3.

Purified T3 were provided by Dr. Hiroyuki Yoshimura
at Eisai Food and Chemical Co., Ltd (Tokyo, Japan).
Purity was ~99% for all T3. Pure a-TOC (295.5%) was
purchased by Sigma-Aldrich (St. Louis, MO, USA). The
real concentration of T3 and a-TOC solutions was
determined spectrophotometrically from the specific
extinction coefficients (g599 a-TOC =75.8; €9905 a-T3 =
91; €396 Y-T3 =90.5; €397 6-T3 = 89.1) before each experi-
ment. Stock solutions of TRF and T3 were stored
at-20 °C in aliquots and diluted to the desired concen-
tration in dimethyl sulfoxide (DMSO).

Cells lines and treatments

HeLa cells were obtained from the American Tissue
Culture Collection (Manassas, VA, USA). A clone of
MCE-7 breast cancer cells, not expressing ER-p [8], was
a gift of Prof M. Marino.

Cells were grown in DMEM medium (Euroclone, Pero,
Milan, Italy) supplemented with 10% fetal bovine serum
(EBS, Sigma-Aldrich), 100 U/ml penicillin and 100 pg/ml
streptomycin (Pen/Strep, Euroclone), 2 mM glutamine
(Euroclone), and 1% non-essential amino acid (Sigma

Aldrich). Cells were maintained at 37 °C in a humidified
atmosphere of 5% CO,/95% air.

Before any experimental session, cells were synchro-
nized in G;/Gq by starvation in serum-free medium for
2 days. Once synchronized, 300.000 cells were seeded
onto multi-well plates. TRF, purified T3, or a-TOC were
dissolved in DMSO and individually added to the culture
medium. When not differently indicated in the text,
incubation time was 24 or 48 h. The final TRF concen-
tration in culture media was 10 pug/ml. Purified a-TOC
and T3 were added to the medium at the following
concentrations: a-TOC was 5 pug/ml; a-T3 was 5 pg/ml;
y-T3 was 5, 10, and 20 pg/ml; and 8-T3 was 5 and
10 pg/ml. These concentrations have been selected in
order to facilitate the comparison with previous
published studies by our group or by others. Control
cells were treated with an equal volume of DMSO alone.

Tunicamycin (TM) and brefeldin A (BFA) were uti-
lized as inducers of EndoR stress response. Preliminary
investigations indicated that they have identical effects
on our cellular model. Treatments with 2.5 pg/ml BFA
for 8 h or 5 ug/ml TM for 4 h were therefore utilized as
a positive control for EndoR stress. Different concentra-
tions (5, 8, and 10 mM) of sodium 4-phenylbutyrate (4-
PBA, Calbiochem, USA), a specific inhibitor of EndoR
stress, were administered to HeLa along with T3 or TRF.
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DNA laddering

DNA extraction was performed according to Gooch and
Yee [20], and with minor modifications previously de-
scribed [15], extracted DNA was electrophoresed in
1.5% agarose gels containing ethidium bromide (EtBr)
and visualized by UVIpro Bronze acquisition system
(UVITEC, Cambridge, UK).

Calcium release assessment and free calcium assay

Free Ca®* concentration was determined by the Fluo-4
NW Calcium Assay Kit (Invitrogen) according to the
manufacturer’s instructions. HeLa cells were incubated
in the presence of TRE, a-TOC, a-T3, y-T3, or 6-T3
(10 pg/ml), and at the end of the incubation time, fluores-
cence was measured (494-nm excitation/516-nm emis-
sion) by a Tecan fluorometer (TECAN Infinite® 200 PRO).

cDNA hybridization and microarray data analysis

Two micrograms of high-quality total RNA were sent to
ServiceXS BV (Leiden, The Netherlands) and processed ac-
cording to the Affymetrix protocol (Affymetrix Eukaryotic
One-Cycle Target Labeling and Control reagents) to gener-
ate biotin-labeled antisense cRNA (Complementary RNA).
Labeled cRNA was hybridized to the NuGO Affymetrix
Human Genechip NuGO_Hs1a520180 (custom designed
by the European Nutrigenomics Organization NuGO,
consisting of 23,941 probe sets including 71 control probe
sets).

Cell intensity files (*.cel) for each GeneChip processed
were generated using Command Console Software.

Three biological replicates were generated for each
experimental condition. Microarray statistical analysis
was performed using oneChannelGUI R package.

Raw signal intensities were normalized using GCRMA
method as background correction, and differentially
expressed genes were identified with LIMMA analysis
selecting only the genes with a fold change (T3 treat-
ment vs control) of at least 0.5 and a p value threshold
above 0.05. The analysis of differential expression by the
LIMMA method is based on an empirical Bayesian
approach and has been reported to be reliable also in
the case of small and unequal sample sizes (ref:
PMID:16646809).

Specific up- and downregulated genes from microarray
analysis were selected for a technical validation by RT-
qPCR technique.

Pathway and network analysis

The set of modulated genes identified by microarrays was
submitted for the analysis of enrichment of gene ontology
(GO) biological processes and cellular components (level 5)
utilizing the DAVID web server [18]. Significant enriched
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GO biological processes were identified according to a p
value <0.05.

Overrepresented biological processes and cellular
components modulated by y-T3 in HeLa and MCEF-7
were compared utilizing the GOSim package on the
basis of the Resnik method to assess their semantic simi-
larities. The obtained matrix of similarity distances was
clustered by the Ward method, and the optimal number
of clusters used to identify the groups of similar GO
terms was assessed choosing the number of clusters that
produces the best silhouette score. Similar analysis was
performed to compare overrepresented terms according
to the treatment with different T3 in HeLa cells.

A specific list of genes related to EndoR stress was built
by merging the annotation obtained from the UniProt
database and PubMed. The search on PubMed was
performed by the Agilent literature search of Cytoscape
software [32], searching about 1000 papers having “endo-
plasmic reticulum stress” and “Homo sapiens” within the
keywords.

RNA isolation and real-time PCR measurements

Total RNA and real-time PCR analysis have been per-
formed as previously described in the detail [15]. Primers
used in real-time PCR measurements (see Table 1) have
been designed according to the available literature of by a
specific software (Primer Express™). Quantitative differ-
ences in cDNA target among samples were measured
according to the mathematical model of Pfaffl [46]. The
expression ratio was determined for each sample by calcu-
lating (Esampie) < ™'/(Econtro) "™, where E is the
efficiency of the primer set and ACt = Ct(control) — Ct(sam-
ple)- Different normalization options, based on a set of dif-
ferent “housekeeping” genes, have been tested (data not
shown) and provided no significant differences at the level
of differential gene expression detection. B-actin was
therefore selected to normalize expression data. Finally,
results have been log, transformed in order to obtain sym-
metrically distributed data. The amplification efficiency of
each primer set was calculated from the slope of a stand-
ard amplification curve of log pl ¢cDNA/reaction vs Ct
value over at least 4 orders of magnitude (E = 10~ (/slope)y,
B-actin primers, E = 2.15; MIC primers, E = 2.03; cathepsin
D primers, E=2.55; CHOP primers, E=194; XBP-1
primers, E =2.19.

RT-PCR analysis of XBP-1 splicing

c¢DNA was synthesized from total RNA using One-Step
RT-PCR SuperScript III reverse transcriptase (Invitrogen)
according to manufacturer’s protocol. The primers used
for PCR (see Table 1) were specific for human sXBP-1
(hsXBP-1). The PCR conditions were as follows: 95 °C for
5 min, 95 °C for 1 min, 58 °C for 30 s, 72 °C for 30 s, and
72 °C for 5 min, with 35 cycles of amplification. A 289-bp
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Table 1 List of genes considered on the basis of data interrogation and primers utilized in RT-PCR and PCR assay

Gene GenBank Primers 5'—3' Size template
B-actin (RT-PCR) NM_001101.3 F: AGAAGGATTCCTATGTGGGGG 101 bp
R: CATGTCGTCCCAGTTGGTGAC
MIC-1 (RT-PCR) NM_004864 F: TGGTGCTCATTCAAAAGACCG 123 bp
R: GTGGAAGGACCAGGACTGCTC
Cathepsin D (RT-PCR) NM_001909 F: CTGTGAGGCCATTGTGGACAC 140 bp
R: CAGCTTGTAGCCTTTGCCTCC
XBP-1 (RT-PCR) NM_005080.3 F: GGAGTTAAGACAGCGCTTGGGGA 118 bp
R: TGTTCTGGAGGGGTGACAACTGGG
CHOP (RT-PCR) NM_001195057.1 F: CCACACCTGAAAGCAGACTGATCCA 102 bp
R: TCATACCAGGCTTCCAGCTCCCA
hXBP-1 (PCR) NM_001079539.1 F: AAACAGAGCAGCAGTCCAGACTGC 472(u)bp 448(s)bp

R: TCCTTCTGGGTAGACCTCTGGGAG

amplicon was generated from unspliced XBP-1 (uXBP-1)
and a 263-bp amplicon from spliced XBP-1 (sXBP-1).
PCR amplicons were digested by Pstl. The Pstl cleavage
site is located in the 26-nt intron of uXBP-1, which allows
differentiation between the uXBP-1 amplicon (cut PCR
product) and sXBP-1. Digested and not-digested PCR
products were resolved on 2% agarose gels, stained with
EtBr. The PCR fragments were visualized with UVIpro
Bronze Imaging System (UVitec, Cambridge, UK).

Protein extraction and western blot

Total protein were extracted as described according to
standardized protocols. The antibody considered were
the following: XBP-1 (1:5000, anti-mouse, Santa Cruz
Biotechnology), PERK (1:1000, anti-rabbit, Cell Signaling
Technology), IRE-1a and phospho-IRE-1a (1:1000, anti-
rabbit, Cell Signaling Technology), ATF-6 (1:1000, anti-
rabbit, Abcam), caspase-9 and cleaved caspase-9 (1:1000,
anti-rabbit, Cell Signaling Technology), a-tubulin
(1:10,000, anti-mouse, MP Biomedicals), and GRP78
(1:1000, anti-rabbit, Cell Signaling Technology).

In order to detect IRE-la and phospho-IRE-1a (p-
IRE-1a) protein levels, we carried out a cytosolic and
nuclear protein extraction as described by Canali et al.
[10]. Protein concentration was determined using a
commercial assay kit (Bio-Rad Laboratories, Hercules,
CA, USA). Protein samples (30 pg per lane) were loaded
onto a SDS polyacrylamide gel, and then, proteins were
transferred to a polyvinylidene difluoride (PVDF) mem-
brane (Millipore Corp., Bedford, MA, USA). The PVDF
membrane was incubated overnight at 4 °C with an
appropriate concentration of specific primary antibody.
After washing and incubation with 1:2000 goat anti-
mouse or goat anti-rabbit peroxidase-conjugated
secondary antibodies (Santa Cruz Biotechnology), specific
bands were detected by chemiluminescence reagent ECL
Plus (Amersham Pharmacia Biotech, Piscataway, NJ) and

visualized by Image Quant LAS 4000 (GE Healthcare Life
Sciences).

The band analysis tools of ImageQuant TL software
(GE Healthcare Life Sciences) were used to select and
determine the background-subtracted density of the
bands in all the western blot gels.

Caspase assay

The activity of caspase-8, caspase-10, and caspase-12
was assessed by means of a Biovision kit (Biovision,
Lyon, France) according to the manufacturer’s instruc-
tions. The assay is based on the detection of cleavage of
substrate IETD-AFC (AFC: 7-amino-4-trifluoromethyl
coumarin) that emits blue light (Amax =400 nm), upon
cleavage of the substrate by FLICE or related caspases,
which can be quantified using a fluorometer or a fluore-
cence microtiter plate reader. Samples were transferred
into a 96-well plate, and the fluorescence assessed using
a Tecan fluorometer (TECAN Infinite® 200 PRO).

Statistical analysis and data presentation

Statistical analysis was performed with R software from
the R Foundation for Statistical Computing (Vienna,
Austria). Data were analyzed by one-way ANOVA with
repeated measures followed by Tukey’s test or Fisher’s
test. p values <0.05 were considered to be statistically
significant.

Data obtained by transcriptomic platform have been
handled according to the MIAME guidelines (see http://
www.ncbi.nlm.nih.gov/geo/info/MIAME.html). Raw data
have been deposited into the Gene Expression Omnibus
(GEO: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE48668) publicly accessible database.

Data obtained by real-time PCR have been handled
according to the MIQE guidelines [9].
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Figures show one out of at least three independent ex-
periments providing similar results. Histograms present
the mean (+S.E.) of at least three experiments.

Additional files

Additional file 1: Table S1. List of genes modulated by T3 according
to microarray analysis. Expression levels are represented as log, fold
changes. The last column on the right indicates if the gene has been
reported to be involved in EndoR stress. (DOCX 49 kb)

Additional file 2: Figure S1. Clusterization of CC enriched after T3
treatment in Hela and MCF-7 cells. The distances between enriched CC
were estimated according to the Resnik measure. The optimal number of
clusters was estimated by silhouette scores and represented with different
colors within the dendrogram. The box on the right side of the figure shows
CCs enriched by a specific treatment. (TIF 3584 kb)

Additional file 3: Figure S2. Densitometric analysis of ATF-6, PERK, and
IRE-1a activity. Treatments with T3 have no significant effect on the
protein expression of ATF-6 and PERK at 24 h from the treatment.
Conversely, IRE-1 phosphorylation is significantly affected by T3 treatment.
Data were analyzed by one-way ANOVA with repeated measures followed
by Fisher's test. Asterisks indicate significant differences (p value <0.05)
between treated cells vs control (CC). (TIF 13186 kb)

Additional file 4: Figure S3. Modulation of MIC-1 mRNA expression.
MIC-1 mRNA upregulation induced by T3 was partially prevented by
pre-treatment with 1CI-182,780. Once synchronized, 300.000 cells were
seeded onto multi-well plates and pre-incubated with 1CI-182.780 (10

— M) for 30 min. TRF, purified T3 or a-TOC were added to the culture
medium for 24 h. Gene expression was analyzed by real-time quantitative
PCR, and results were log transformed (logarithm 2) in order to obtain
data symmetrically distributed [46]. Statistical significance was calculated
by one-way ANOVA with repeated measures followed by Tukey's test
using ACt value. Asterisks (¥) indicate significant differences (p value
<0.05) with respect to control. Data represent the pooled values of at
least three independent experiments. (TIF 15116 kb)
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